Skip to main content
Log in

Bending Failure of “Thick” Co-Based-Alloy Amorphous Wires

  • APPLIED PROBLEMS OF STRENGTH AND PLASTICITY
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—The bending-deformation behavior of rapidly quenched Co69Fe4Cr4Si12B11 alloy wires 0.1–1 mm in diameter, which are fabricated by the Ulitovskii–Taylor method, are studied. A correlation between the failure mechanism of a wire and its diameter and bending loading conditions is shown. It is found that wires up to 0.2 mm in diameter exhibit no bending failure. The wedge-type fracture is observed for wires 0.2–0.35 mm in diameter; wires more that 0.35 mm in diameter exhibit steplike fracture. The wedge-type fracture, a dense regular shear-band network, and vein- and corallike fracture are shown to correspond to the 100% amorphous state of wires. This combination of signs is observed for wires up to 0.4 mm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. V. Molokanov, T. R. Chueva, P. P. Umnov, E. E. Shalygina, and S. V. Simakov, “Thick amorphous wires of the Fe75Si10B15–Co75Si10B15–Ni75Si10B15 system: fabrication, structure, and properties,” Perspektiv. Mater., No. 2, 5–11 (2016).

  2. F. Qin and H.-X. Peng, “Ferromagnetic microwires enabled multifunctional composite materials,” Prog. Mater. Sci. 58, 183–259 (2013).

  3. V. S. Larin, A. V. Torcunov, A. Zhukov, J. González, M. Vazquez, and L. Panina, “Preparation and properties of glass-coated microwires,” J. Mag. Mag. Mater. 249 (1–2), 39–45 (2002).

  4. P. P. Umnov, V. V. Molokanov, Yu. S. Shalimov, N. V. Umnova, T. R. Chueva, and V. T. Zabolotnyi, “Manufacturing peculiarities of amorphous wire by the Ulitovskii–Taylor method using continuous casting,” Perspektiv. Mater., No. 2, 87–91 (2010).

  5. P. P. Umnov, D. M. Panferov, T. R. Chueva, N. V. Umnova, K. S. Filippov, and V. V. Molokanov, “Effect of precursor melting method on the structure and properties of a “thick” Co-alloy amorphous microwire,” Perspektiv. Mater., No. 7, 61–67 (2016).

  6. T. R. Chueva, V. V. Molokanov, P. P. Umnov, and N. V. Umnova, “Application of thermal analysis in developing the preparation technology of melt for the fabrication of “thick” Co-alloy amorphous microwire,” Fiz. Khim. Obtab. Mater, No. 6, 82–89 (2016).

    Google Scholar 

  7. P. P. Umnov, V. V. Molokanov, N. V. Kurakova, A. N. Shalygin, V. N. Grishin, A. G. Kolmakov, and Yu. K. Kovneristyii, “Defects and their effect on physico-mechanical properties of composite microwire amorphous metallic core–glass sheath,” Deform. Razrushenie Mater., No. 10, 40–46 (2007).

  8. A. V. Sergueeva, J. Walleser, J. Zhou, B. E. Meacham, and D. J. Branagan, “Ductile high strength microwires from glassy nanosteel alloys,” Mater. Sci. Eng. A 534, 603–608 (2012).

  9. Y. Shi, J. Luo, F. Yuan, and L. Huang, “Intrinsic ductility of glassy solid,” J. Appl. Phys. 115 (4), 043528 (1–17) (2014).

  10. A. Inoue, M. Hagiwara, and T. Masumoto, “Mechanical properties of Fe–Si–B amorphous wires produced by in-rotating-water spinning method,” J. Metall. Mater. Trans. A 13 (3), 373–382 (1982).

  11. B. A. Sun and W. H. Wang, “The fracture of bulk metallic glasses,” Prog. Mater. Sci. 74, 211–307 (2015).

  12. J. A. Verduzco, R. J. Hand, and H. A. Davies, “A comparison of the mechanical properties of Fe–Cr–Si–B metallic glass wires and HT steel wires,” in Proceedings of 13th European Conference on Fracture (San Sebastián, 2000).

  13. H. Lavvafi, J. R. Lewandowski, and J. J. Lewandowski, “Flex bending fatigue testing of wires, foils, and ribbons,” Mater. Sci. Eng. A 601, 123–130 (2014).

  14. V. V. Molokanov, P. P. Umnov, N. V. Kurakova, M. A. Sevost’yanov, A. G. Kolmakov, A. N. Shalygin, and Yu. K. Kovneristyii, “Optimization of preparation technology of composite material: high-strength steel wire–amorphous surface soft-magnetic Co-alloy layer,” Perspektiv. Mater., No. 4, 93–100 (2006).

  15. P. P. Umnov, N. V. Umnova, A. A. Stegnukhin, A. V. Lavrenyuk, V. V. Samsonova, and V. V. Molokanov, “Effect of quenching conditions on the structure and properties of “thick” wire fabricated by Ulitovskii–Taylor method,” Deform. Razrushenie Mater., No. 11, 11–14 (2012).

  16. I. I. Mokhirev, T. P. Chueva, V. T. Zabolotntii, P. P. Umnov, N. V. Umnova, and V. V. Molokanov, “Strength and plastic properties of long Co-alloy amorphous wires prepared by various rapid melt-quenching techniques,” Deform. Razrushenie Mater., No. 7, 31–35 (2010).

  17. S. F. Guo, K. C. Chan, and L. Liu, “Notch toughness of Fe-based bulk metallic glass and composites,” J. Alloys Compd. 509 (39), 9441–9446 (2011).

  18. J. A. Verduzo, “Fatigue fracture morphologies of some Fe-based amorphous alloy wire,” Mater. Lett. 57 (5), 1029–1033 (2003).

Download references

ACKNOWLEDGMENTS

This study was performed in terms of state task no. 007-00129-18-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Molokanov.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molokanov, V.V., Chueva, T.R., Umnova, N.V. et al. Bending Failure of “Thick” Co-Based-Alloy Amorphous Wires. Russ. Metall. 2019, 409–414 (2019). https://doi.org/10.1134/S0036029519040244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519040244

Keywords:

Navigation