Skip to main content
Log in

Normalization of the Cold Shortness of Plate Steel: II. Short-Brittleness Thresholds in Pipe Tests

  • Diagnostics and Mechanical Test Techniques
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The following serial curves are obtained for a pipe steel of strength class K65 (Kh80): strength and plasticity curves during tension in the temperature range from–80 to +20°C, fracture energy from drop weight tear test (DWTT) diagrams, and impact toughness KCV curves (from–180 to +20°C). The ductile–brittle transition temperature range determined from the DWTT energy is shown to be higher than that determined from a KCV diagram by 80 K. The KCV–40 criterion is concluded to be more reliable than the DWTT–20 criterion. KCV and DWTT tests are shown to reproduce the crack starting conditions in a pipe, and the resistance of a high-strength pipe steel to extended fracture should be estimated using other criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Shtremel’, A. B. Arabei, A. G. Glebov, I. Yu. Pyshmintsev, T. S. Esiev, A. I. Abakumov, and B. A. Sarychev, “Normalization of the cold brittleness of thick-sheet steel. Part I. Set of thresholds,” Def. Pazr. Mater., No. 6, 36–48 (2017).

    Google Scholar 

  2. M. A. Shtremel’, A. B. Arabei, A. G. Glebov, A. I. Abakumov, T. S. Esiev, A. O. Struin, and B. A. Sarychev, “Forces and strains in DWTT tests,” Def. Pazr. Mater., No. 9, 36–47 (2016).

    Google Scholar 

  3. V. V. Moskvichev, Fundamentals of the Structural Strength of Technical Systems and Engineering Constructions. Part 1. Formulation of the Problem and Analysis of the Limiting States (Nauka, Novosibirsk, 2002).

    Google Scholar 

  4. M. A. Shtremel’, Strength of Alloys. Part 2. Deformation (MISiS, Moscow, 1997).

    Google Scholar 

  5. P. D. Odesskii, I. P. Shabalov, A. M. Arsenkin, A. N. Shuvalov, and M. V. Likhachev, “Estimation of the fracture strength of the large-diameter tube metal in testing full-thickness specimens,” Def. Pazr. Mater., No. 4, 29–41 (2015).

    Google Scholar 

  6. I. Yu. Pyshmintsev, A. B. Arabei, T. S. Esiev, A. O. Struin, M. A. Valov, and E. R. Nasybulina, “Energy of fracture of pipe steels of strength class K65 (Kh80),” Nauka Tekhn. Gaz. Prom., No. 4, 63–72 (2011).

    Google Scholar 

  7. L. I. Gladshtein, P. D. Odesskii, and I. I. Vedyakov, Layered Fracture of Steels and Welded Joints (Intermet Inzhiniring, Moscow, 2009).

    Google Scholar 

  8. A. B. Arabei, I. Yu. Pyshmintsev, M. A. Shtremel’, A. G. Glebov, A. O. Struin, and A. M. Gervas’ev, “Structural causes of fish-scale ductile fracture of thick steel sheets,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 9, 9–15 (2009).

    Google Scholar 

  9. D. S. Tsvetkov, A. M. Korchagin, S. D. Popova, S. M. Tikhonov, O. G. Zotov, and V. P. Leonov, “Effect of the structural disadvantages of a continuous caster on the properties of high-strength pipe strips,” in Proceedings of XIX International Conference Pipes 2011, Ed. by I. Yu. Pyshmintsev (RosNITI, Chelyabinsk, 2012), Part 1, pp. 219–227.

    Google Scholar 

  10. M. A. Shtremel’, Fracture. Book 2. Fracture of Structures (MISiS, Moscow, 2015).

    Google Scholar 

  11. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Structure of Heat-Treated Steel (Metallurgiya, Moscow, 1994).

    Google Scholar 

  12. A. A. Kudryavtsev and A. V. Radionov, Introduction to Quantitative Risk Management (SPbU, St. Petersburg, 2016).

    Google Scholar 

  13. A. D. Amaev, A. M. Kryukov, I. M. Neklyudov, and A.M. Parshin, Radiation Damage and Functionality of Structural Materials, Ed. by A. M. Parshin and P. A. Platonov (Politekhnika, St. Petersburg, 1997).

  14. M. A. Shtremel’, Fracture. Book 1. Fracture of Material (MISiS, Moscow, 2014).

    Google Scholar 

  15. P. A. Sundaram, A. E. Valkonen, and J. P. Hirth, “Effect of specimen geometry on the multiple n behaviour of an AISI 1090 spheroidized steel,” Acta Metal. Mater. 43 (2), 587–591 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shtremel’.

Additional information

Original Russian Text © M.A. Shtremel’, A.B. Arabei, A.G. Glebov, I.Yu. Pyshmintsev, T.S. Esiev, A.I. Abakumov, 2017, published in Deformatsiya i Razrushenie Materialov, 2017, No. 7, pp. 28–39.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtremel’, M.A., Arabei, A.B., Glebov, A.G. et al. Normalization of the Cold Shortness of Plate Steel: II. Short-Brittleness Thresholds in Pipe Tests. Russ. Metall. 2018, 411–420 (2018). https://doi.org/10.1134/S003602951804016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602951804016X

Keywords

Navigation