Skip to main content
Log in

Phase Dynamics of Metal Fragmentation during Megaplastic (Severe) Deformation

  • Physical Foundations of Strength and Plasticity
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The fragmentation of metals during megaplastic (severe) deformation is described in terms of a two-defect model. The process kinetics has been studied qualitatively. A general expression for the Lyapunov indices, which determine the stability of limiting (stationary) structures, is derived. Critical conditions for controlling parameters are found, and the diagrams that determine the stability of stationary states are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Glezer, “On the nature of superhigh plastic (megaplastic) deformation,” Izv. Ross. Akad. Nauk, Ser. Fiz. 71 (12), 1764–1773 (2007).

    Google Scholar 

  2. A. M. Glezer and L. S. Metlov, “Physics of megaplastic (severe) deformation in solids,” Phys. Solid State 52 (6), 1162–1169 (2010).

    Article  Google Scholar 

  3. L. S. Metlov, A. M. Glezer, and V. N. Varyukhin, “Cyclic character of the evolution of the defect structure and properties of metallic materials upon megaplastic deformation,” Deform. Razr. Mater. 5, 8–13 (2014).

    Google Scholar 

  4. L. S. Metlov, “Nonequilibrium dynamics of a twodefect system under severe load,” Phys. Rev. E 90 (3), 022124(8) (2014).

    Article  Google Scholar 

  5. A. V. Khomenko and I. A. Lyashenko, “Phase dynamics and kinetics of thin lubricant film driven by correlated temperature fluctuations,” Fluct. Noise Lett. 7 (2), L111–L133 (2007).

    Article  Google Scholar 

  6. A. V. Khomenko and I. A. Lyashenko, “Melting of ultrathin lubricant film due to dissipative heating of friction surfaces,” Tech. Phys, 52 (9), 1239–1244 (2007).

    Article  Google Scholar 

  7. L. S. Metlov, Nonequilibrium Evolution Thermodynamics and Its Applications (Noulidzh, Donetsk, 2014).

    Google Scholar 

  8. A.V. Khomenko, D.S. Troshchenko, and L.S. Metlov, “Thermodynamics and kinetics of solids fragmentation ae severe plastic deformation,” Condens. Matter Phys. 18 (3), 33004 (14) (2015).

    Article  Google Scholar 

  9. A. V. Khomenko, D. S. Troshchenko, D. S. Boyko, and M. V. Zakharov, “The external periodic influence effect on the kinetics of metals fragmentation during the severe plastic deformation,” J. Nano-Electron. Phys. 7 (1), 01039(11) (2015).

    Google Scholar 

  10. A. V. Khomenko, D. S. Troshchenko, and L. S. Metlov, “Simulation of the kinetics of regimes of materials fragmentation upon severe plastic deformation,” Metallofiz. Noveishie Tekhnol. 39 (2), 265–284 (2017).

    Article  Google Scholar 

  11. A. V. Khomenko, I. A. Lyashenko, and L. S. Metlov, “Phase dynamics and kinetics of severe plastic deformation,” Metallofiz. Noveishie Tekhnol. 30 (6), 859–872 (2008).

    Google Scholar 

  12. L. S. Metlov and V. N. Varyukhin, “Simulation of laws of strengthening of bulk solids by SPD by the methods of nonequilibrium evolution thermodynamics. I. Dependences on the problem parameters,” Fiz. Tekhn. Vysok. Davl. 22 (2), 7–21 (2012).

    Google Scholar 

  13. G. A. Malygin, “Kinetic mechanism of the fragmented dislocation structures upon large plastic deformations,” Phys. Solid State 44 (11), 2072–2079 (2002).

    Article  Google Scholar 

  14. A. A. Mazilkin, B. B. Straumal, S. G. Protasova, O. A. Kogtenkova, and R. Z. Valiev, “Structural changes in aluminum alloys upon severe plastic deformation,” Phys. Solid State 49 (5), 868–873 (2007).

    Article  Google Scholar 

  15. R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Evolution of copper structure upon consolidation of powders by intensive plastic torsion,” Vestn. Ufa Gos. Aviats. Tekhn. Univ. 17 (4), 81–89 (2013).

    Google Scholar 

  16. I. G. Brodova, “Effective methods of refining the aluminum alloy structure,” Zh. Sibirsk. Federal. Univ., Tekhn. Tekhnolog. 8 (4), 519–530 (2015).

    Google Scholar 

  17. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, O. A. Kogtenkova, L. Kurmanaeva, B. Baretzky, G. Schütz, A. Korneva, and P. Zieba, “SPD-induced changes of structure and magnetic properties in the Cu–Co alloys,” Mater. Letters 98, 217–221 (2013).

    Article  Google Scholar 

  18. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Fabrication, Structure, and Properties (Akademkniga, Moscow, 2007).

    Google Scholar 

  19. A. D. Pogrebnjak, “Structure and properties of nanostructured Ti–Hf–Zr–V–NbN coatings,” J. Nanomater. 2013 (12), 1–12 (2013).

    Article  Google Scholar 

  20. Yu. V. Khlebnikova, L. Yu. Egorova, V. P. Pilyugin, T. R. Suaridze, and A. M. Patselov, “Evolution of the structure of an a-titanium single crystal during high pressure torsion,” Tech. Phys. 60 (7), 1005–1013 (2015).

    Article  Google Scholar 

  21. A. I. Olemskoi, A. V. Khomenko, and D. O. Kharchenko, “Self-organized criticality within fractional Lorenz scheme,” Physica A 323, 263–293 (2003).

    Article  Google Scholar 

  22. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Vibration Theory (Nauka, Moscow, 1981).

    Google Scholar 

  23. A. V. Khomenko and I. A. Lyashenko, “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layer,” Phys.-Usp. 55 (10), 1008–1034 (2012).

    Article  Google Scholar 

  24. I. A. Birger and R. R. Mavlyutov, Strength of Materials (Nauka, Moscow, 1986).

    Google Scholar 

  25. P. P. Pal–Val, Yu. N. Loginov, S. L. Demakov, A. G. Illarionov, V. S. Natsik, L. N. Pal-Val, A. A. Davydenko, and A. P. Rybalko, “Unusual Young’s modulus behavior in ultrafine-grained and microcrystalline copper wires caused by texture changes during processing and annealing,” Mater. Sci. Eng., A 618, 9–15 (2014).

    Article  Google Scholar 

  26. E. G. Pashinskaya, A. V. Zavdoveev, A. A. Maksakova, V. N. Varyukhin, A. A. Tolpa, and V. M. Tkachenko, “Effect of a drawer with shift on the features of the structure and properties of a low-carbon wire,” Fiz. Tekh. Vysok. Davl. 25 (1, 2), 107–121 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khomenko.

Additional information

Original Russian Text © A.V. Khomenko, D.S. Troshchenko, L.S. Metlov, 2017, published in Deformatsiya i Razrushenie Materialov, 2017, No. 8, pp. 2–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomenko, A.V., Troshchenko, D.S. & Metlov, L.S. Phase Dynamics of Metal Fragmentation during Megaplastic (Severe) Deformation. Russ. Metall. 2018, 295–302 (2018). https://doi.org/10.1134/S0036029518040079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518040079

Keywords

Navigation