Skip to main content
Log in

Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The primary radiation damage of a binary FeCr alloy deformed by applied mechanical loading is studied by an atomistic molecular dynamics simulation. Loading is simulated by specifying an applied pressure of 0.25, 1.0, and 2.5 GPa of both signs. Hydrostatic and uniaxial loading is considered along the [001], [111], [112], and [210] directions. The influence of loading on the energy of point defect formation and the threshold atomic displacement energy in single-component bcc iron is investigated. The 10-keV atomic displacement cascades in a “random” binary Fe–9 at % Cr alloy are simulated at an initial temperature of 300 K. The number of the point defects generated in a cascade is estimated, and the clustering of point defects and the spatial orientation of interstitial configurations are analyzed. Our results agree with the results of other researchers and supplement them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Bates and E. R. Gilbert, “Experimental evidence for stress enhanced swelling,” J. Nucl. Mater. 59, 95–102 (1976).

    Article  Google Scholar 

  2. J. F. Bates and E. R. Gilbert, “Effects of stress on swelling in 316 stainless steel,” J. Nucl. Mater. 71, 286–292 (1978).

    Article  Google Scholar 

  3. V. S. Neustroev, S. V. Belozerov, E. I. Makarov, and A. V. Obuhov, “Effect of tensile and compresive stresses on the evolution of vacancy porosity in the Fe–18% Cr–10% Ni–Ti steel irradiated in BOR-60 reactor,” Phys. Met. Metallogr. 115 (10), 1007–1011 (2014).

    Article  Google Scholar 

  4. B. Z. Margolin, A. I. Murashova, and V. S. Neustroev, “Effect of stresses on the radiation swelling of austenitic steels,” Vopr. Materialoved., No. 4(68), 124–139 (2011).

    Google Scholar 

  5. S. Miyashiro, S. Fujita, and T. Okita, “MD simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure Cu,” J. Nucl. Mater. 415, 1–4 (2011).

    Article  Google Scholar 

  6. S. Di, Z. Yao, M. Daymond, and F. Gao, “Molecular dynamics simulations of irradiation cascades in alphazirconium under macroscopic strain,” Nucl. Instr. Meth. B 303, 95–99 (2013).

    Article  Google Scholar 

  7. A. V. Korchuganov, K. P. Zol’nikov, D. S. Kryzhevich, V. M. Chernov, and S. G. Psakh’e, “Simulation of the nucleation of plastic deformation in mechanically loaded crystals during a radiation action,” VANT, Ser. Termoyadernyi Sintez 38 (1), 42–48 (2015).

    Google Scholar 

  8. F. Gao, D. Bacon, P. Flewitt, and T. Lewis, “The influence of strain on defect generation by displacement cascades in alpha-iron,” Nucl. Instr. Meth. B 180, 187–193 (2001).

    Article  Google Scholar 

  9. B. Beeler, M. Asta, P. Hosemann, and N. Grønbech- Jensen, “Effects of applied strain on radiation damage generation in body-centered cubic iron,” J. Nucl. Mater. 459, 159–165 (2015).

    Article  Google Scholar 

  10. S. Miyashiro, S. Fujita, T. Okita, and H. Okuda, “MD simulations to evaluate effects of applied tensile strain on irradiation-induced defect production at various PKA energies,” Fusion Engineering and Design 87(7–8), 1352–1355 (2012).

    Article  Google Scholar 

  11. M. F. Finnis and J. E. Sinclair, “A simple empirical N-body potential for transition metals,” Philos. Mag. A 50, 45–55 (1984).

    Article  Google Scholar 

  12. G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S.W. Han, and A. V. Barashev, “Development of an interatomic potential for phosphorus impurities in a-iron,” J. Phys.: Condens. Matter 16, S2629–S2642 (2004).

    Google Scholar 

  13. E. E. Bloom, S. J. Zinkle, and F. W. Wiffen, “Materials to deliver the promise of fusion power—progress and challenges,” J. Nucl. Mater. 329–333, 12–19 (2004).

    Article  Google Scholar 

  14. L. K. Mansur, A. F. Rowcliffe, R. K. Nanstad, S. J. Zinkle, W. R. Corwin, and R. E. Stoller, “Materials needs for fusion, generation IV fission reactors and spallation neutron sources—similarities and differences,” J. Nucl. Mater. 329–333, 166–172 (2004).

    Article  Google Scholar 

  15. N. Baluc, “Materials for fusion power reactors,” Plasma Phys. Control. Fusion 48, B165–B178 (2006).

    Article  Google Scholar 

  16. A. Caro, D. A. Crowson, and M. Caro, “Classical many-body potential for concentrated alloys and the inversion of order in iron–chromium alloys,” Phys. Rev. Lett. 95, 0757021–0757024 (2005).

    Article  Google Scholar 

  17. J. Wallenius, P. Olsson, C. Lagerstedt, N. Sandberg, R. Chakarova, and V. Pontikis, “Modeling of chromium precipitation in Fe–Cr alloys,” Phys. Rev. B 69, 0941031–0941039 (2004).

    Article  Google Scholar 

  18. M. Tikhonchev, V. Svetukhin, and E. Gaganidze, “MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy,” J. Nucl. Mater. 442, S618–S623 (2013).

    Article  Google Scholar 

  19. P. Olsson, I. A. Abrikosov, L. Vitos, and J. Wallenius, “Ab initio formation energies of Fe–Cr alloys,” J. Nucl. Mater. 321, 84–90 (2003).

    Article  Google Scholar 

  20. M. Tikhonchev, V. Svetukhin, A. Kadochkin, and E. Gaganidze, “MD simulation of atomic displacement cascades in Fe–10 at. % Cr binary alloy,” J. Nucl. Mater. 395, 50–57 (2009).

    Article  Google Scholar 

  21. K. Nordlund, J. Wallenius, and L. Malerba, “Molecular dynamics simulations of threshold displacement energies in Fe,” Nucl. Instr. Met. Phys. Res. B 246(2), 322–332 (2006).

    Article  Google Scholar 

  22. L. Malerba, D. Terentyev, P. Olsson, R. Chakarova, and J. Wallenius, “Molecular dynamics simulation of displacement cascades in Fe–Cr alloys,” J. Nucl. Mater. 329–333, 1156–1160 (2004).

    Article  Google Scholar 

  23. D. A. Terentyev, L. Malerba, R. Chakarova, K. Nordlund, P. Olsson, M. Rieth, and J. Wallenius, “Displacement cascades in Fe–Cr: a molecular dynamics study,” J. Nucl. Mater. 349, 119–132 (2006).

    Article  Google Scholar 

  24. D. Terentyev, P. Olsson, T. P. C. Klaver, and L. Malerba, “On the migration and trapping of single self-interstitial atoms in dilute and concentrated Fe-Cr alloys: atomistic study and comparison with resistivity recovery experiments,” Comput. Mater. Sci. 43, 1183–1192 (2008).

    Article  Google Scholar 

  25. K. Vörtler, C. Björkas, D. Terentyev, L. Malerba, and K. Nordlund, “The effect of Cr concentration on radiation damage in Fe–Cr alloys,” J. Nucl. Mater. 382, 24–30 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Tikhonchev.

Additional information

Original Russian Text © M.Yu. Tikhonchev, V.V. Svetukhin, 2017, published in Metally, 2017, No. 3, pp. 43–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonchev, M.Y., Svetukhin, V.V. Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation. Russ. Metall. 2017, 397–405 (2017). https://doi.org/10.1134/S003602951705010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602951705010X

Keywords

Navigation