Skip to main content
Log in

Analytical representation of the concentration dependences of the thermodynamic functions of liquid binary metallic systems with negative deviations from ideal behavior

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The application of a number of algebraic expressions for describing the concentration dependences of the thermodynamic functions in liquid binary metallic systems with negative deviations from ideal behavior is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Tarby and F. R. Stein, “Thermodynamics of binary metallic solutions: application of the Wilson equation,” Met. Trans. 1, 2354–2356 (1970).

    Article  Google Scholar 

  2. R. L. Sharkey, M. J. Pool, and M. Hoch, “Thermodynamic modeling of binary and ternary metallic solutions,” Met. Trans. 2, 3039–3049 (1971).

    Article  Google Scholar 

  3. C. W. Bale and A. D. Pelton, “Mathematical representation of thermodynamic properties in binary systems and solution of Gibbs–Duhem equation,” Met. Trans. 5, 2323–2337 (1974).

    Article  Google Scholar 

  4. J. P. Hajra, “A new formalism for representation of binary thermodynamic data,” Met. Trans. B 11, 215–219 (1980).

    Article  Google Scholar 

  5. J. D. Esdaile, “A Gaussian-based formalism for the representation of free energy as a function of composition of binary metallic solutions,” Met. Trans. B 13, 213–225 (1982).

    Article  Google Scholar 

  6. J. Tomiska, “On the algebraic representation of general thermodynamic excess properties,” CALPHAD 10 (1), 91–100 (1986).

    Article  Google Scholar 

  7. S.-D. Choi and E. E. Hucke, “Applicability of various formalisms for representation of excess free energy in binary metallic solutions,” CALPHAD 14 (4), 367–376 (1990).

    Article  Google Scholar 

  8. A. G. Morachevskii and I. B. Sladkov, Thermodynamic Calculations in Metallurgy: A Handbook, 2nd ed. (Metallurgiya, Moscow, 1993).

    Google Scholar 

  9. A. G. Morachevskii and M. S. Kokhatskaya, Applied Chemical Thermodynamics (Politekhn. Univ., St. Petersburg, 2008).

    Google Scholar 

  10. P. K. Suetin, Classical Orthogonal Polynomials (Nauka, Moscow, 1979).

    Google Scholar 

  11. A. D. Pelton and C. W. Bale, “Legendre polynomial expansions of thermodynamic properties of binary solutions,” Met. Trans. A. 17, 1057–1063 (1986).

    Article  Google Scholar 

  12. A. G. Mokrievich, E. A. Maiorova, and A. G. Morachevskii, “Application of algebraic polynomials in describing and calculating thermodynamic properties of liquid alloys,” Zh. Prikl. Khim. 61 (8), 1741–1746 (1988).

    Google Scholar 

  13. E. Hala, J. Pick, V. Fried, and O. Vilim, Vapour–Liquid Equilibrium (Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  14. A. G. Morachevskii and L. N. Gerasimenko, “Calculation of thermodynamic properties of liquid ternary metallic systems on the basis of data on binary systems,” Zh. Fiz. Khim. 45 (8), 1951–1953 (1971).

    Google Scholar 

  15. A. G. Morachevskii and T. V. Butukhanova, “Thermodynamic properties of dilute solutions of antimony in liquid lead,” Zh. Prikl. Khim. 83 (4), 559–563 (2010).

    Google Scholar 

  16. A. G. Morachevskii, “Thermodynamic properties of dilute solutions of various elements in liquid lead,” Zh. Prikl. Khim. 87 (12), 1697–1718 (2014).

    Google Scholar 

  17. R. L. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys, (Amer. Soc. Metals, Metals Park, 1973).

    Google Scholar 

  18. R. V. Orye and J. M. Prausnitz, “Multicomponent equilibria with the Wilson equation,” Industr. Eng. Chem. 57 (5), 18–26 (1965).

    Article  Google Scholar 

  19. A. G. Morachevskii, E. Yu. Kolosova, L. Sh. Tsemekhman, and L. B. Tsymbulov, “Application of the Wilson method in calculating thermodynamic properties of liquid ternary metallic systems on the basis of data on binary boundary systems,” Zh. Prikl. Khim. 80 (7), 1071–1075 (2007).

    Google Scholar 

  20. A. G. Morachevskii, I. A. Shesterkin, V. B. Busse-Machukas, et al., Sodium. Properties, Production, and Application (Khimiya, St. Petersburg, 1992).

    Google Scholar 

  21. A. G. Morachevskii, I. N. Beloglazov, and B. A. Kasymbekov, Potassium: Properties, Production, and Application (Izd. Dom, Ruda i Metally, Moscow, 2000).

    Google Scholar 

  22. P. J. Tumidajski, A. Petric, T. Takenaka, et al., “Thermodynamic properties of rubidium–lead liquid alloys,” J. Phys.: Condens. Matter 2 (1), 209–220 (1990).

    Google Scholar 

  23. Z. Mozer and K. Fitzner, “Thermodynamic interpretation of systems with intermetallic compounds,” in Thermodynamics of Nuclear Materials (Int. Atomic Energy Agency, Vienna, 1975), Vol. 2, pp. 379–391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Morachevskii.

Additional information

Original Russian Text © A.G. Morachevskii, E.G. Firsova, 2016, published in Rasplavy, 2016, No. 6, pp. 545–553.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morachevskii, A.G., Firsova, E.G. Analytical representation of the concentration dependences of the thermodynamic functions of liquid binary metallic systems with negative deviations from ideal behavior. Russ. Metall. 2017, 111–115 (2017). https://doi.org/10.1134/S0036029517020082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517020082

Keywords

Navigation