Skip to main content
Log in

Electrochemical recovery of rhenium from W–Re alloys in the form of perrhenic acid: I. Fundamentals of the process

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Linear voltammetry is used to study the anodic behavior of a VR20 alloy in sodium hydroxide solutions, and the possibility of high-rate dc electrochemical dissolution of this alloy is shown. Experimental dependences of the rate of alloy dissolution and the anode current efficiency on the anode current density are determined, and the electric power consumed for alloy dissolution under optimum conditions is determined in large-scale tests. Potassium perrhenate is removed from the formed electrolyte as an intermediate product to form perrhenic acid. The main characteristics of the electrodialysis conversion of the synthesized potassium perrhenate into perrhenic acid with a concentration of 591 g/L electrolyte are determined. A technological scheme is proposed for the recovery of rhenium from the wastes of a W–Re alloy in the form of perrhenic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Palant, I. D. Troshkina, A. M. Chekmarev, and A. I. Kostylev, Technology of Rhenium (OOO Galleya-Print, Moscow, 2015).

    Google Scholar 

  2. L. Z. Bykhovskii and L. P. Tigunov, “Strategic mineral raw materials: ways of solving the problem of deficiency,” Mineral. Res. Rossii. Ekonomika Upravl., No. 5, 43–49 (2015).

    Google Scholar 

  3. L. Ya. Agapova, Z. S. Abisheva, S. K. Kilibaeva, A. N. Altenova, G. S. Ruzakhunova, and I. A. Sapukov, “Combined processing of technical tungsten–rhenium-containing wastes,” in Proceedings of Conference on Advanced Methods of Beneficiation and Combined Processing of Natural and Technical Mineral Raw Materials (Almaty, 2014), pp. 361–363.

    Google Scholar 

  4. T. B. Elemesov, O. V. Chernyshova, D. T. Shakirova, D. V. Drobot, and P. S. Dzhumaev, “Electrochemical dissolution of tungsten–rhenium-containing alloys,” Tonkie Khim. Tekhn. 10 (2), 53–60 (2015).

    Google Scholar 

  5. A. A. Palant, V. A. Bryukvin, A. M. Levin, and O. M. Levchuk, “Electrochemical processing of the metallic wastes of nonferrous and rare metals,” in Proceedings of Conference on 75th Anniversary of Baikov Institute of Metallurgy and Materials Science, Ed. by K. A. Solntsev (Interkontakt Nauka, Moscow, 2013), рр. 176–182.

    Google Scholar 

  6. V. P. Guro and A. A. Belov, “Repeated removal of ammonium perrhenate and the recovery of rhenium from the wastes of rhenium-containing alloys,” in Proceedings of Conference on Resource-Recycling, Low- Waste, and Nature-Saving Technologies of Land Reclamation (Ust’-Kamenogorsk, 2012), pp. 165–166.

    Google Scholar 

  7. N. V. Petrushin, O. G. Ospennikova, and E. S. Elyutin, “Rhenium in single-crystal nickel superalloys for gas turbine engine blades,” Aviats. Mater. Tekhn., No. S5, 5–16 (2014).

    Google Scholar 

  8. Cheng Tingyu, Xiong Ning, Peng Kaiyuan, Yang Haibing, and Yin Jingchuan, “Technology of production and application of rhenium and its alloys,” Rare Metal Mater. Eng. 38 (2), 373–376 (2009).

    Article  Google Scholar 

  9. R. P. Singh Gaur, T. A. Wolfe, and S. A. Braymiller, “Recycling of rhenium-containing wire scrap?” Intern. J. Refract. Metals Hard Mater. 50, 79–85 (2015).

    Article  Google Scholar 

  10. E. Fleischmann, M. K. Miller, E. Affeldt, and U. Glatzel, “Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickelbased superalloys,” Acta Materialia 87 (1), 350–356 (2015).

    Article  Google Scholar 

  11. J. D. Lessard, D. G. Gribbin, and L. N. Shekhter, “Recovery of rhenium from molybdenum and copper concentrates during the looping sulfide oxidation process,” Intern. J. Refract. Metals Hard Mater. 44, 1–6 (2014).

    Article  Google Scholar 

  12. O. M. Levchuk, A. A. Palant, V. A. Bryukvin, et al., “Electrochemical ac processing of the wastes of refractory rare metals,” Tsvetn. Met., No. 5, 29–35 (2011).

    Google Scholar 

  13. S. N. Aitekeeva, “Electrochemical processing of rhenium–tungsten-containing wastes and the fabrication of tungsten–rhenium coatings,” Kompleks. Isp. Miner. Syr’ya, No. 5–6 (212–213), 27–30 (2000).

    Google Scholar 

  14. A. A. Palant, A. M. Levin, V. A. Bryukvin, et al., “Electrodialysis synthesis of concentrated solutions of perrhenic acid,” Tsvetn. Met., No. 11, 62–64 (2010).

    Google Scholar 

  15. A. A. Palant, V. A. Bryukvin, A. M. Levin, et al., “Combined synthesis of perrhenic acid solutions,” Elektrometallurgiya, No. 7, 23–25 (2011).

    Google Scholar 

  16. E. M. Savitskii and M. A. Tylkina, “State of the problem of rhenium nd new trends in designing alloys,” in Study and Application of Rhenium Alloys (IMET, Moscow, 1975).

    Google Scholar 

  17. Phase Diagrams of Binary Metallic Alloys: A Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 2000), Vol. 3, Part 2.

  18. A. T. Vas’ko and S. K. Kovach, Electrochemistry of Refractory Metals (Tekhnika, Kiev, 1983).

    Google Scholar 

  19. A. G. Atanasyants, Anodic Behavior of Metals (Metallurgiya, Moscow, 1987).

    Google Scholar 

  20. A. A. Palant, O. M. Gracheva, and V. A. Bryukvin, “Electrochemical processing of the metallic wastes of rhenium in ammonia electrolytes using a symmetric alternating current,” Elektrometallurgiya, No. 3, 24–27 (2007).

    Google Scholar 

  21. S. F. Belov, M. S. Igumnov, and A. M. Levin, “Anodic dissolution of tungsten in sodium hydroxide in the presence of NH4 +, SO4 2- and CO3 2- ions,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 1, 124–127 (1991).

    Google Scholar 

  22. A. A. Palant and V. A. Pavlovskii, “Physicochemical and technological fundamentals of electrochemical processing of the wastes of metallic tungsten,” Tekhnologiya Metallov, No. 11, 3–7 (2003).

    Google Scholar 

  23. A. M. Levin and O. M. Levchuk, “Electrical conductivity of ammonia solutions containing rhenium (VII),” Russian Metallurgy (Metally), No. 9, 692–695 (2014).

    Google Scholar 

  24. O. M. Levchuk and A. M. Levin, “Effect of a dc magnetic field on the electrical conductivity of ammonia solutions containing tungsten(VI) and rhenium(VII) ions,” Russian Metallurgy (Metally), No. 1, 23–27 (2015).

    Google Scholar 

  25. A. Afifi and S. Azen, Statistical Analysis (Academic Press, New York, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Levin.

Additional information

Original Russian Text © A.M. Levin, O.M. Levchuk, 2017, published in Metally, 2017, No. 1, pp. 55–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, A.M., Levchuk, O.M. Electrochemical recovery of rhenium from W–Re alloys in the form of perrhenic acid: I. Fundamentals of the process. Russ. Metall. 2017, 47–53 (2017). https://doi.org/10.1134/S0036029517010074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517010074

Keywords

Navigation