Skip to main content
Log in

Effect of the β decay of metallic fission products on the chemical and phase compositions of the uranium–plutonium nitride nuclear fuel irradiated by fast neutrons

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Thermodynamic analysis of the chemical and phase compositions of uranium–plutonium nitride (U0.8Pu0.2)N0.995 irradiated by fast neutrons to a burn-up fraction of 14% shows that a structure, which consists of a solid solution based on uranium and plutonium nitrides and containing some elements (americium, neptunium, zirconium, yttrium, lanthanides), individual condensed phases (U2N3, CeRu2, Ba3N2, CsI, Sr3N2, LaSe), metallic molybdenum and technetium, and U(Ru, Rh, Pd)3 intermetallics, forms due to the accumulation of metallic fission products. The contents and compositions of these phases are calculated. The change in the chemical and phase compositions of the irradiated uranium–plutonium nitride during the β decay of metallic radioactive fission products is studied. The kinetics of the transformations of 95Nb41N, 143Pr59N, 151Sm62N, and 147NdN into 95Mo42 + Ns.s., 143Nd60N, 151Eu63N, and 147SmN, respectively, is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Kotel’nikov, S. N. Bashlykov, A. N. Kashtanov, and T. S. Men’shikova, High-Temperature Nuclear Fuel, 2nd ed. (Atomizdat, Moscow, 1978).

    Google Scholar 

  2. F. G. Reshetnikov, “State of design and production of uranium–plutonium fuel for fast reactors,” Atom. Energy, 91 (6), 453–458 (2001).

    Article  Google Scholar 

  3. R. Thetford and M. Mignanelli, “The chemistry and physics of modeling nitride fuels for transmutation,” J. Nucl. Mater. 320, 44–53, (2003).

    Article  Google Scholar 

  4. G. V. Kiselev, “Fractionation and transmutation of radioactive wastes,” Atom. Tekhn. Zarubezh., No. 7, 11–16 (2001).

    Google Scholar 

  5. G. S. Bulatov, K. N. Gedgovd, and D. Yu. Lyubimov, “Thermodynamic analysis of the chemical and phase compositions of uranium–plutonium nitride depending on temperature and depletion,” Materialovedenie, No. 1, 2–7 (2009).

    Google Scholar 

  6. G. G. Bondarenko, Radiation Physics, Structure, and Strength of Solids (Laboratoriya Znanii, Moscow, 2016).

    Google Scholar 

  7. G. B. Sinyarev, N. A. Vatolin, B. G. Trusov, and G. K.Moiseev, Application of Computers for the Thermodynamic Calculations of Metallurgical Processes (Nauka, Moscow, 1982).

    Google Scholar 

  8. V. M. Poplavskii, “Fast reactors. State of the art and prospects,” Atom. Energ. 96 (5), 327–335 (2004).

    Article  Google Scholar 

  9. F. M. Mitenkov, “Prospects of development of fast breeders,” Atom. Energ. 92 (6), 423–432 (2002).

    Article  Google Scholar 

  10. I. S. Kulikov, Thermodynamics of Carbides and Nitrides: A Handbook (Metallurgiya, Chelyabinsk, 1988).

    Google Scholar 

  11. L. V. Gurvich, I. V. Veits, A. V. Medvedev, et al., Thermodynamic Properties of Individual Substances: A Handbook (Nauka, Moscow, 1982).

    Google Scholar 

  12. T. Ogawa, T. Ohmichi, A. Maeda, Y. Arai, and Y. Suzuki, “Vaporization behaviour of (Pu,Am)N,” J. Alloys Compounds 224, 55–59 (1995).

    Article  Google Scholar 

  13. K. Nakajima, Y. Arai, and Y. Suzuki, “Vaporization behaviour of (Np,Pu)N,” J. Alloys Compounds 271–273, 666–669 (1998).

    Article  Google Scholar 

  14. T. Nishi, A. Itoh, M. Takano, M. Numata, M. Akabori, Y. Arai, and K. Minato, “Heat capacities of NpN and AmN,” J. Nucl. Mater. 377, 467–469 (2008).

    Article  Google Scholar 

  15. V. M. Gorbachev, Yu. S. Zamyatin, and A. A. Lbov, Interaction of Radiations with Heavy-Element Nuclei and Nuclear Fission: A Handbook (Atomizdat, Moscow, 1976).

    Google Scholar 

  16. Effect of Fission Products on the Chemical and Phase Compositions of Nuclear Fuel at a High Burn-up Fraction. Russian Foundation for Basic Research, project no. 02-02- 16463, 2003. http://www.rfbr.ru/rffi/ru/project_- search/o_214694.

  17. A. S. Nikiforov, V. V. Kulichenko, and M. I. Zhikharev, Neutralization of Liquid Radioactive Wastes (Energoatomizdat, Moscow, 1985).

    Google Scholar 

  18. N. G. Gusev and P. P. Dmitriev, Radioactive Chains: A Handbook 2nd ed. (Energoatomizdat, Moscow, 1988).

    Google Scholar 

  19. G. S. Bulatov, K. N. Gedgovd, D. Yu. Lyubimov, G. G. Bondarenko, and M. M. Yakunkin, “Effect of the electron decay of metallic fission products on the chemical and phase compositions of an irradiated uranium–plutonium fuel,” Russian Metallurgy (Metally), No. 5, 465–469 (2009).

    Google Scholar 

  20. G. G. Bondarenko, G. S. Bulatov, K. N. Gedgovd, D. Yu. Lyubimov, and M. M. Yakunkin, “Effect of the electron decay of metallic fission products on the chemical and phase compositions of an uranium–plutonium fuel irradiated by fast neutrons,” Russian Metallurgy (Metally), No. 11, 909–914 (2011).

    Google Scholar 

  21. E. Fromm and E. Gebhard, Gase und Kohlenstoff in Metallen (Springer, Berlin, 1976).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Bondarenko.

Additional information

Original Russian Text © G.G. Bondarenko, A.V. Androsov, G.S. Bulatov, K.N. Gedgovd, D.Yu. Lyubimov, M.M. Yakunkin, 2016, published in Metally, 2016, No. 5, pp. 117–122.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, G.G., Androsov, A.V., Bulatov, G.S. et al. Effect of the β decay of metallic fission products on the chemical and phase compositions of the uranium–plutonium nitride nuclear fuel irradiated by fast neutrons. Russ. Metall. 2016, 879–883 (2016). https://doi.org/10.1134/S0036029516090068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516090068

Navigation