Skip to main content
Log in

Assessment of mild steel damage characteristics by physical methods

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The deformation and fracture localization characteristics are estimated by the methods of replicas, acoustic emission, metal magnetic memory, ultrasonic attenuation, microhardness, and electrical resistance. The relation between the estimated physical parameters on the one hand and the plastic zone size and the microcrack concentration in this zone, on the other, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nondestructive Control: A Handbook, Ed. by V. V. Klyuev (Mashinostroenie, Moscow, 2006), Vol. 7.

  2. H. A. Richard and K. Benitz, “A loading device for the creation of mixed mode in fracture mechanics,” Intern. J. Fracture 22 (2), R55–R58 (1983).

    Article  Google Scholar 

  3. A. A. Dubov, Al. A. Dubov, and S. M. Kolokol’nikov, Magnetic Memory of Metals and Control Devices: A Tutorial (ID Spektr, Moscow, 2012).

    Google Scholar 

  4. L. R. Botvina, V. P. Levin, M. R. Tyutin, and N. A. Zharkova, “Heat capacity of deformed steels,” Dokl. Akad. Nauk 434 (5), 612–615 (2010).

    Google Scholar 

  5. S. N. Zhurkov, V. S. Kuksenko, and A. I. Slutsker, “Formation of submicroscopic cracks in polymers under load,” Fiz. Tverd. Tela 11 (1), 296–302 (1969).

    Google Scholar 

  6. L. R. Botvina, N. A. Zharkova, M. R. Tyutin, A. P. Soldatenkov, Yu. A. Demina, and V. P. Levin, “Development of plastic zones and damage at various types of loading,” Zavod. Lab. 79 (5), 45–56 (2013).

    Google Scholar 

  7. T. Shiotani, J. Bisschop, and J. G. M. van Mier, “Temporal and spatial development of drying shrinkage cracking in cement-based materials,” Eng. Fracture Mechanics 70, 1509–1525 (2003).

    Article  Google Scholar 

  8. A. Carpinteri, G. Lacidogna, and S. Puzzi, “From criticality to final collapse: evolution of the “b-value” from 1.5 to 1.0,” Chaos, Solitons and Fractals 41 (2), 843–853 (2009).

    Article  Google Scholar 

  9. L. R. Botvina, Fracture: Kinetics, Mechanisms, and General Laws (Nauka, Moscow, 2008).

    Google Scholar 

  10. M. R. Tyutin, L. R. Botvina, N. A. Zharkova, T. B. Petersen, and J. A. Hudson, “Evolution of damage in low-carbon steel in tension condition,” Strength, Fracture and Complexity, No. 3, 73–80 (2005).

    Google Scholar 

  11. E. S. Gorkunov, S. V. Smirnov, S. M. Zadvorkin, D. I. Vichuzhanin, and S. Yu. Mitropol’skaya, “Effect of cumulative shear deformation and damage during torsion on the magnetic properties of steel,” Fizicheskaya Mezomekhanika 7 (2), 311–314 (2004).

    Google Scholar 

  12. E. S. Gorkunov, S. V. Smirnov, and S. S. Rodionova, “Effect of plastic deformation under hydrostatic pressure on the damage and magnetic properties of lowcarbon grade 3sp steel,” Fizicheskaya Mezomekhanika 6 (5), 101–108 (2003).

    Google Scholar 

  13. V. T. Vlasov and A. A. Dubov, Physical Fundamentals of the Metal Magnetic Memory Method (Tisso, Moscow, 2004).

    Google Scholar 

  14. V. L. de Araujo Freitas, V. H. C. de Albuquerque, and S. E. de Macedo, “Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements,” Mater. Sci. Eng. A. 527 (16/17), 4431–4437 (2010).

    Article  Google Scholar 

  15. A. A. Karabutov, N. B. Podymova, and E. B. Cherepetskaya, “Measurement of the dependence of local Young’s modulus on the porosity of isotropic composite materials by a pulsed acoustic method using a laser ultrasonic source,” PMTF 54 (3), 181–190 (2013).

    Google Scholar 

  16. A. Badidi Bouda, A. Benchaala, and K. Alem, “Ultrasonic characterization of materials hardness,” Ultrasonic 38, 224–227 (2000).

    Article  Google Scholar 

  17. B. R. Tittmann, O. Buck, L. Ahlberg, M. de Billy, F. Cohen-Tenoudji, A. Jungman, and G. Quentin, “Surface wave scattering from elliptical cracks for failure prediction,” J. Appl. Phys. 51 (1), 142–150 (1980).

    Article  Google Scholar 

  18. A. Badidi Bouda, H. Belhelfa, V. Jerir, and R. Khalimi, “Nondestructive method of estimating the carbon content in steel,” PMTF 55 (3), 174–180 (2014).

    Google Scholar 

  19. L. Botvina, L. Ju. Fradkin, and B. Bridge, “Power laws and generalized dimensional analysis in ultrasonic NDE,” Nondestr. Test. Eval. 12, 103–118 (1995).

    Article  Google Scholar 

  20. K. V. Kurashkin and V. V. Mishakin, “Ultrasonic estimation of residual stresses,” Zavod. Lab. 79 (4), 54–58 (2013).

    Google Scholar 

  21. F. M. Mitenkov, V. V. Mishakin, S. N. Pichkov, V. A. Klyushnikov, and N. V. Danilova, “Use of optical and acoustic control methods for estimating the damage of steel at the early stages of fatigue fracture,” Zavod. Lab. 75 (12), 40–45 (2009).

    Google Scholar 

  22. L. R. Botvina, N. A. Zharkova, M. R. Tyutin, T. B. Petersen, and V. G. Budueva, “Acoustic properties of low-carbon steel at various stages of fracture,” Deformatsiay Razrushenie Materialov, No. 4, 35–41 (2005).

    Google Scholar 

  23. C. M. Suh, R. Yuuki, and H. Kitagawa, “Fatigue microcracks in a low carbon steel,” Fatigue Fract. Eng. Mater. Struct. 8 (2), 193–203 (1985).

    Article  Google Scholar 

  24. K. J. Miller, “The behavior of short fatigue cracks and their initiation. Pt II. A general summary,” Fatigue Fract. Eng. Mater. Struct. 10 (2), 93–113 (1987).

    Article  Google Scholar 

  25. M. W. Brown and K. J. Miller, “Initiation and growth of cracks in biaxial fatigue assessments of metals,” Intern. J. Fatigue 18 (4), 231–246 (1996).

    Google Scholar 

  26. I. I. Novikov, Thermodynamics of Spinodals and Phase Transitions (Nauka, Moscow, 2000).

    Google Scholar 

  27. I. I. Novikov, V. V. Aleksandrov, A. N. Borzyak, S. V. Boyarskii, V. G. Goncharov, T. I. Orlova, V. V. Roshchupkin, and N. A. Semashko, “Experimental determination of the heat capacity of structural materials,” in Structural and High-Temperature Materials for New Engineering (Nauka, Moscow, 1978), pp. 166–178.

    Google Scholar 

  28. L. A. Sosnovskii, N. A. Makhutov, A. M. Bordovskii, and V. V. Vorob’ev, “Methods for estimating the degradation of materials and structures,” Zavod. Lab. 69 (11), 40–49 (2003).

    Google Scholar 

  29. V. A. Lomantsov, “Development of a method for diagnostics of the oil-and-gas equipment used in hydrogen sulfide–containing media by analyzing the embrittlement of materials,” Candidate’s Dissertation in Engineering (Moscow, 2013).

    Google Scholar 

  30. E. E. Zorin and N. E. Zorin, “Microindentation-based rapid diagnostics of the mechanical properties of welded structures during long-term operation,” Svarka Diagnostika, No. 5, 25–29 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Botvina.

Additional information

Original Russian Text © L.R. Botvina, A.P. Soldatenkov, V.P. Levin, M.R. Tyutin, Yu.A. Demina, T.B. Petersen, A.A. Dubov, N.A. Semashko, 2016, published in Metally, 2016, No. 1, pp. 27–39.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botvina, L.R., Soldatenkov, A.P., Levin, V.P. et al. Assessment of mild steel damage characteristics by physical methods. Russ. Metall. 2016, 23–33 (2016). https://doi.org/10.1134/S0036029516010067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516010067

Navigation