Skip to main content
Log in

Intensification of the ion transport in an aluminum chloride electrolyte

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

It is found that the electrical conductivities of molten aluminum chloride electrolytes increase with the electric field and reach limiting values, which are higher than the low-voltage values by several hundreds of percent. Under the action of high-voltage microsecond pulses, the melts transform into a nonequilibrium state with a increased electrical conductivity and long-term relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Carpio, F. C. Kibler, L. A. King, K. Torklep, and H. A. Oye, “Transport properties of acid AlCl3–LiCl–NaCl melts (viscosity electrical conductivity and density),” The Electrochemical Society, Fall Meeting, Extended Abstracts 80 (2), 1669–1670 (1980).

    Google Scholar 

  2. S.-Y. Yoon and R. S. Donald, “A spectroelectrochemical study of aluminum and magnesium electrolysis in molten chlorides,” Massachusetts Institute of Technology. Seoul 87 (7), 1011 (1987).

    Google Scholar 

  3. H. A. Oye, E. Rytter, P. S. J. Klaboe, and S. J. Cyvin, “Raman spectra of KCl–AlCl3 melts and normal coordinate analysis of Al2Cl7,” Acta Chem. Scand. 25, 559–576 (1971).

    Article  Google Scholar 

  4. E. Rytter, H. A. Oye, S. J. Cyvin, B. N. Cyvin, and P. Klaboe, “Raman spectra of AlCl3–KCl and trends in species formation,” J. Inorg. and Nuclear Chem. 35 (4), 1185–1198 (1973).

    Article  Google Scholar 

  5. P. Klaeboe, E. Rytter, and C. E. Sjgoren, “Infrared high temperature spectra of aluminium chloride and related species,” J. Molec. Struct. 113, 213–226 (1984).

    Article  Google Scholar 

  6. O. M. Shabanov, “Limiting electrical conductivities of ions in molten salts,” Rasplavy, No. 5, 66–75 (1987).

    Google Scholar 

  7. O. M. Shabanov, S. M. Gadzhiev, A. O. Magomedova, and S. A. Dzhamalova, “Electroconductivity, electroluminescence spectra, and activation of molten MCl2 + KCl (M = Ca, Sr, Ba) in high electric fields,” Chem. Phys. Letter. 380 (3–4), 352–358 (2003).

    Article  Google Scholar 

  8. O. M. Shabanov, S. I. Suleimanov, and R. T. Kachaev, “Structure and electrical conductivity of molten zinc chloride in equilibrium and strongly nonequilibrium states,” Rasplavy, No. 6, 40–47 (2011).

    Google Scholar 

  9. O. M. Shabanov, S. M. Gadzhiev, A. A. Iskakova, R. T. Kachaev, A. O. Magomedova, and S. I. Suleimanov, “Wien effect in molten magnesium chloride,” Elektrokhimiya 47 (2), 235–239 (2011).

    Google Scholar 

  10. O. M. Shabanov, R. T. Kachaev, A. A. Iskakova, M. Babaeva, S. M. Gadzhiev, and A. P. Pashaev, “Electrical conductivity of a-AgJ and its melt in high-voltage pulsed electric fields,” Elektrokhimiya 45 (3), 378–382 (2009).

    Google Scholar 

  11. O. M. Shabanov, R. T. Kachaev, S. A. Dzhamalova, and A. A. Iskakova, “Wien effect in superionic CuCl, CuBr, and CuJ crystals and their melts,” Elektrokhimiya 46 (12), 11390–11394 (2010).

    Google Scholar 

  12. S. M. Gadzhiev, O. M. Shabanov, A. S. Gadzhiev, A. M. Salikhova, G. S. Efendieva, and Z. M. Balamirzoeva, “High-voltage activation of electrical conductivity and its relaxation in the binary solid electrolyte KHSO4–CsHSO4 system and its melt,” Rasplavy, No. 4, 55–63 (2010).

    Google Scholar 

  13. O. M. Shabanov, F. O. Ismailova, D. G. Maksumova, S. M. Gadzhiev, and A. O. Magomedova, “Effect of high-voltage pulses on the electrochemical properties of a molten magnesium electrolyte,” Elektrokhimiya 42 (2), 1095–1098 (2006).

    Google Scholar 

  14. O. M. Shabanov, A. A. Taushova (Iskakova), and R. T. Kachaev, “Electrical conductivity and relaxation of the nonequilibrium melts in the MgCl2–KCl system,” Rasplavy, No. 2, 49–57 (2011).

    Google Scholar 

  15. S. M. Gadzhiev, O. M. Shabanov, A. O. Magomedova, and S. A. Dzhamalova, “Limiting high-voltage electrical conductivities of molten KCl–MCl2 (M = Ca, Sr, Ba) mixtures,” Elektrokhimiya 39 (4), 425–430 (2003).

    Google Scholar 

  16. S. M. Gadzhiev, O. M. Shabanov, and A. O. Magomedova, “Limiting electrical conductivities of molten CaCl2, SrCl2, and BaCl2,” Rasplavy, No. 5, 42–48 (2003).

    Google Scholar 

  17. O. M. Shabanov, P. T. Kachaev, and S. I. Suleymanov, “Activation of solid and molten electrolytes and their relaxation,” Advanced Materials Research 718–720, 146–150 (2013).

    Article  Google Scholar 

  18. O. M. Shabanov, U. G. Magomedbekov, D. G. Maksumova, F. O. Ismailova, and S. M. Gadzhiev, “Relaxation dynamics of the electrical conductivity of nonequilibrium NaCl–KCl–MgCl2 melts,” Rasplavy, No. 2, 39–46 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Shabanov.

Additional information

Original Russian Text © O.M. Shabanov, L.A. Kazieva, R.T. Kachaev, A.O. Magomedova, S.I. Suleimanov, 2015, published in Rasplavy, 2015, No. 4, pp. 70–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabanov, O.M., Kazieva, L.A., Kachaev, R.T. et al. Intensification of the ion transport in an aluminum chloride electrolyte. Russ. Metall. 2015, 654–659 (2015). https://doi.org/10.1134/S0036029515080169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029515080169

Keywords

Navigation