Skip to main content
Log in

Fundamental relation between the main parameters of the thermally activated transport phenomena in complex oxide melts

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The relation between the activation energy and the preexponential factor in the Arrhenius equation that describes the viscosity and electrical conductivity of oxide (slag) melts is systematically analyzed over wide composition and temperature ranges for the first time. When deriving this relation, we do not use any model concepts and assumptions concerning the structure of slag melts or the character of electric charge transfer in them. The fundamental applicability of the Meyer-Neldel rule for this relation is shown and grounded. The application of this algorithm in practice can give information on the structure of experimental data, nonobvious correlations, and possible relations of a higher order and can quantitatively predict the behavior of parameters, including the range outside experimentally determined data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Srldhar, “Estimation models for molten slag and alloy viscosities,” J. Metals 11, 46–50 (2002).

    Google Scholar 

  2. A. Kondratiev, E. Jak, and P. C. Hayes, “Predicting slag viscosities in metallurgical systems,” J. Metals 11, 41–45 (2002).

    Google Scholar 

  3. T. Iida, Z. Morita, and T. Mizobuchi, “Relationships between a parameter deduced from viscosity and some physico-chemical properties of molten slags,” in Proceedings of 3rd International Conference on Molten Slags and Fluxes (Institute of Metals, London, 1988), pp. 199–202.

    Google Scholar 

  4. S. Seetharaman and D. Sichen, “Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing,” Met. Mater. Trans. B 25, 589–595 (1994).

    Article  Google Scholar 

  5. L. Segers, A. Fontana, and R. Winand, “Conductivities electriques de melanges de silicates fondus du systeme CaO-SiO2-MnO,” Electroch. Acta 23, 1281–1286 (1978).

    Article  Google Scholar 

  6. M. I. Gasik and V. A. Gavrilov, Silicothermy of Manganese (Sistemnye Tekhnologii, Dnepropetrovsk, 2001).

    Google Scholar 

  7. M. I. Gasik, Manganese (Metallurgiya, Moscow, 1992).

    Google Scholar 

  8. V. Ya. Dashevskii, I. A. Karyazin, and V. I. Kashin, “Viscosity of oxide melts based on manganese oxide,” Izv. Ross. Akad. Nauk, Ser. Met., No. 1, 28–32 (1984).

    Google Scholar 

  9. V. N. Kornoukhov, Yu. I. Voronov, V. P. Zaiko, and V. I. Zhuchkov, Technology of Low-Carbon Ferrochrome (Izd. UrO RAN, Yekaterinburg, 2001).

    Google Scholar 

  10. Yu. I. Voronov, V. P. Zaiko, and V. I. Zhuchkov, Technology of Molybdenum-Containing Ferroalloys (Izd. UrO RAN, Yekaterinburg, 2000).

    Google Scholar 

  11. F. Shahbazian, “Experimental studies of the viscosities in the CaO-FeO-SiO2-CaF2 slags,” Scand. J. Metall. 30, 302–308 (2001).

    Article  Google Scholar 

  12. M. M. Gasik and M. I. Gasik, “Multi-variation analysis and optimisation of electrical conductivity of MnO-CaO-SiO2 slags,” in Proceedings of 12th International Ferroalloys Congress, Ed. by A. Vartiainen (Helsinki, 2010), Vol. 2, pp. 537–545.

    Google Scholar 

  13. W. Meyer and H. Neldel, “Über die beziehungen zwischen der energiekonstanten e under der mengenkonstanten a in der leitwerts-temperaturformel bei oxydischen halbleitern,” Z. Tech. Physik B 18, 588–593 (1937).

    Google Scholar 

  14. R. Metselaar and G. Oversluizen, “The Meyer-Neldel rule in semiconductors,” J. Solid State Chem. 55, 320–326 (1984).

    Article  Google Scholar 

  15. J. W. Niemantsverdriet, K. Markert, and K. Wandelt, “The compensation effect and the manifestation of lateral interactions in thermal desorption spectroscopy,” Appl. Surf. Sci. 31, 211–219 (1988).

    Article  Google Scholar 

  16. W. Bogusz, D. E. Kony, and F. Krok, “Application of the Meyer-Neldel rule to the electrical conductivity of Nasicon,” Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 15, 169–172 (1992).

    Article  Google Scholar 

  17. G. C. Bond, “Kinetics of alkane reactions on metal catalysts: activation energies and the compensation effect,” Catal. Today 49, 41–47 (1999).

    Article  Google Scholar 

  18. R. Arora and A. Kumar, “Electrical conduction in chalcogenide glasses. Applicability of the Meyer-Neldel rule,” Phys. Stat. Sol. A 1125, 273–278 (1991).

    Article  Google Scholar 

  19. S. K. Dwivedi, M. Dixit, and A. Kumar, “Pre-exponential factor in semiconducting chalcogenide glasses,” J. Mater. Sci. Lett. 17, 233–235 (1998).

    Article  Google Scholar 

  20. N. Mehta, K. Singh, and N. S. Saxena, “Correlation between pre-exponential factor and activation energy of non-isothermal crystallization for virgin and irradiated Fe78B13Si9 metallic glass,” Physica B 404, 2184–2188 (2009).

    Article  Google Scholar 

  21. R. A. Swalin, “Correlation between frequency factor and activation energy for solute diffusion,” J. Appl. Phys. 27, 554–555 (1956).

    Article  Google Scholar 

  22. D. Lazarus, “Effect of screening on solute diffusion in metals,” Phys. Rev. 93, 973–976 (1954).

    Article  Google Scholar 

  23. J. C. Dyre, “A phenomenological model for the Meyer-Neldel rule,” J. Phys. C: Solid State Phys. 19, 5655–5664 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Gasik.

Additional information

Original Russian Text © M.M. Gasik, M.I. Gasik, L.I. Leont’ev, V.Ya. Dashevskii, K.V. Griogorovich, 2014, published in Metally, 2014, No. 4, pp. 3–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasik, M.M., Gasik, M.I., Leont’ev, L.I. et al. Fundamental relation between the main parameters of the thermally activated transport phenomena in complex oxide melts. Russ. Metall. 2014, 503–508 (2014). https://doi.org/10.1134/S0036029514070052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029514070052

Keywords

Navigation