Skip to main content
Log in

Corrosion Behavior of Ni–Mo Coatings Prepared by Different Electrodeposition Methods in Na2S Solution

  • ELECTROCHEMISTRY. GENERATION AND STORAGE OF ENERGY FROM RENEWABLE SOURCES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

To enhance the corrosion resistance of pure aluminum in sulfur-containing environments, Ni–Mo coatings were deposited on aluminum substrates via direct current (DC) and pulse current (PC) electrodeposition techniques. The phase structure, micromorphology and element composition of the coatings were characterized by XRD, SEM, and EDS. The corrosion resistance of pure aluminum and Ni–Mo coatings in 1 wt % Na2S aqueous solution were studied by static corrosion immersion and electrochemical test. The results indicated that aluminum suffered severe corrosion in Na2S aqueous solution, leading to the formation of Al(OH)3. The application of Ni–Mo coatings effectively prevented direct contact between the solution and the aluminum substrate. Compared with the coating prepared by DC electrodeposition under the same conditions, the Ni–Mo coating obtained through PC electrodeposition exhibited finer grains, a more compact and flatter surface, and higher Mo content, the impedance value was 15.61 kΩ cm2 and its corrosion current density was 9.610 × 10–6 A/cm2. The corrosion current density of the coating prepared by DC electrodeposition was 1.514 × 10–5 A/cm2, whereas that of pure aluminum in the same medium was 3.030 × 10–3 A/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. O. Ur Rehman and Y. Ali, Transp. Res. E Logist. Transp. Rev. 148, 102246 (2021).

  2. M. Yuan, H. R. Zhang, B. H. Wang, et al., Energy Policy 136, 111077 (2020).

  3. Z. M. Wang and J. Zhang, 34, 17 (2016).

  4. H. H. Jasim, Mater. Corros. 67, 988 (2016).

    Article  CAS  Google Scholar 

  5. Gamal, A. M. Hossam, Zewail, et al., Corros. Rev. 36, 483 (2018).

    Article  CAS  Google Scholar 

  6. Y. B. Peng, G. Wen, X. L. Gou, et al., Sep. Purif. Technol. 202, 111 (2018).

    Article  CAS  Google Scholar 

  7. Y. Lv, M. Y. Liu, and Y. S. H. Xu, Prot. Met. Phys. Chem. Surf. 54, 526 (2018).

    Article  CAS  Google Scholar 

  8. M. El Kamel, A. Galtayries, Ph. Vermaut, et al., Surf. Interface Anal. 42, 605 (2010).

    Article  CAS  Google Scholar 

  9. T. Stephenson, M. Hazelton, M. Kupsta, et al., Fuel 139, 411 (2015).

    Article  CAS  Google Scholar 

  10. R. R. Yang, Z. R. Zhang, J. C. Jiang, et al., Eng. Failure Anal. 108, 104342 (2020).

  11. G. R. Osorio-Celestino, M. Hernandez, D. Solis-Ibarra, et al., ACS Omega 5, 17304 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. E. Z. Hu, Y. F. Xu, X. G. Hu, et al., Renewable Energy 37, 371 (2012).

    Article  CAS  Google Scholar 

  13. Y. C. Wang, L. F. Cao, X. D. Wu, et al., Mater. Rev. 33, 1190 (2019).

    Google Scholar 

  14. M. Xiang, Y. Yuan, X. He, et al., High Volt. Eng. 45, 484 (2019).

    Google Scholar 

  15. X. Y. Cao, Y. W. Lu, W. R. Wang, et al., Chem. Eng. Commun. 210, 233 (2022).

    Article  Google Scholar 

  16. R. R. Yang, Z. R. Wang, J. C. Jiang, et al., Eng. Failure Anal. 108, 104342 (2020).

  17. T. Ando and Y. Harada, Zairyo-to-Kankyo 54, 201 (2005).

    Article  CAS  Google Scholar 

  18. Y. Y. Liu, J. M. Huang, J. B. Claypool, et al., Appl. Surf. Sci. 355, 805 (2015).

    Article  CAS  Google Scholar 

  19. Q. Yu, S. X. Yu, Q. Xing, et al., J. Mater. Eng. Perform. 28, 5725 (2019).

    Article  CAS  Google Scholar 

  20. A. Tanji, F. Gapsari, A. Syahrom, et al., J. Alloys Compd. 871, 159582 (2021).

  21. Y. L. Chou, J. W. Yeh, and H. C. Shih, Corros. Sci. 52, 2571 (2010).

    Article  CAS  Google Scholar 

  22. A. Elbiache and P. Marcus, Corros. Sci. 33, 261 (1992).

    Article  CAS  Google Scholar 

  23. V. Rajaei, H. Rashtchi, K. Raeissi, et al., Int. J. Hydrogen Energy 42, 14264 (2017).

    Article  CAS  Google Scholar 

  24. A. Laszczyńska, W. Tylus, J. Winiarski, et al., Surf. Coat. Technol. 317, 26 (2017).

    Article  Google Scholar 

  25. Y. K. Xu, S. M and M. Y. Fan, et al., Surf. Coat. Technol. 363, 51 (2019).

    Article  CAS  Google Scholar 

  26. R. Y. Zhang, Z. L. Li and X. Yu, et al., Surf. Eng. 35, 578 (2019).

    Article  CAS  Google Scholar 

  27. Kung-Hsu Hou and Yann-Cheng Chen, Appl. Surf. Sci. 257, 6340 (2011).

    Article  CAS  Google Scholar 

  28. H. Goldasteh and S. Rastegari, Surf. Coat. Technol. 259, 393 (2014).

    Article  CAS  Google Scholar 

  29. S. Lakra, H. S. Maharana, and A. Basu, Mater. Manuf. Proces. 31, 1447 (2016).

    Article  CAS  Google Scholar 

  30. P.-Ch. Huang, K.-H. Hou, G.-L. Wang, et al., Int. J. Electrochem. Sci. 10, 4972 (2015).

    Article  CAS  Google Scholar 

  31. Q. L. Bao, W. X. Zheng, L. Chen, et al., Colloids Surf., A 636, 128128 (2022).

  32. R. Mousavi, M. Esmailzadeh, and F. Deflorian, Mater. Res. Express 6, 056534 (2019).

  33. S. K. Singh, S. Samanta, A. K. Das, et al., Surf. Topogr.: Metrol. Prop. 7 (3), 1 (2019).

    Google Scholar 

  34. J. J. Gray, B. S. El Dasher, and C. A. Orme, Surf. Sci. 600, 2488 (2006).

    Article  CAS  Google Scholar 

  35. C. Liu, X. Huang, R. Xu, et al., J. Mater. Eng. Perform. 30, 2514 (2021).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China no. 1 under grant no. 21203095; the Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) no. 2; and the Priority Academic Program Development of Jiangsu Higher Education Institutions no. 3.

Author information

Authors and Affiliations

Authors

Contributions

Xu Li: conceptualization, writing—review and editing, methodology. Zengzeng Zheng: investigation, writing—original draft. Xujie Xiao: data curation, resources. Jingkang Chen: validation visualization, software. Chengfei Zhu: writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Chengfei Zhu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, Z., Xiao, X. et al. Corrosion Behavior of Ni–Mo Coatings Prepared by Different Electrodeposition Methods in Na2S Solution. Russ. J. Phys. Chem. 97, 2846–2854 (2023). https://doi.org/10.1134/S0036024423120300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120300

Keywords:

Navigation