Skip to main content
Log in

Evolution of Electrochemical Behavior, Electrical Conductivity, and Microhardness of Electrodeposited W Coatings Enhanced by Ni During Long Immersion in 3% NaCl Media

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This paper deals with detailed physical and electrochemical properties of electroplated W enhanced by massive Ni coatings. Corrosion behavior of elaborated deposits in 3% NaCl solution is examined, as well as the influence of immersion time in corrosive media on the morphology, electrical conductivity, and microhardness of all coatings. Characterizations are carried out using atomic force microscopy, scanning electronic microscopy, energy dispersive spectroscopy, and X-ray diffraction analysis. The linear polarization curve and EIS during long-term immersion tests were used to identify and quantify corrosion compounds on surfaces. All obtained coatings corrode in the 3% NaCl solution, leading to uniform corrosion for the enhanced W coating, while this is not the case for the pure Ni film. The main corrosion products for the enhanced W coatings are NiO, Ni(OH)2 and WO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Glazkova SA, Shipilov VD, Grikurov GN (1984) Examination of the resistance of austenitic chrome-manganese steels to point and crevice corrosion. Chem Pet Eng 20:612–615. https://doi.org/10.1007/BF01169663

    Article  Google Scholar 

  2. Ignatenko PI, KudelinYuV GAA, Muza MA (1992) Effect of nitrogen content and thickness of resistive silicate chrome-silicon films on their corrosion resistance. Mater Sci 27:521–522. https://doi.org/10.1007/BF00726470

    Article  Google Scholar 

  3. Yarkovoi VS (1993) Thermodynamic analysis and intergranular corrosion of corrosion-resistant chrome-manganese steels with nitrogen. Met Sci Heat Treat 35:273–277. https://doi.org/10.1007/BF00780595

    Article  Google Scholar 

  4. Krivenyuk VV, Avramenko DS, Prikhod’ko RP (2013) Interpolation analysis of the features of long-term creep rupture in chrome-nickel and chrome-molybdenum steels. Strength Mater 45:187–191. https://doi.org/10.1007/s11223-013-9446-1

    Article  Google Scholar 

  5. Chen D, Gu H, Huang A, Ni H (2019) Towards chrome-free lining for plasma gasifiers using the CA6-SiC castable based on high-temperature water vapor corrosion. Ceram Int 45:12429–12435. https://doi.org/10.1016/j.ceramint.2019.03.175

    Article  CAS  Google Scholar 

  6. Wang Q, Luo S, Wang S, Wang H, Ramachandran CS (2019) Wear, erosion and corrosion resistance of HVOF-sprayed WC and Cr3C2 based coatings for electrolytic hard chrome replacement. Int J Refract Met Hard Mater 81:242–252. https://doi.org/10.1016/j.ijrmhm.2019.03.010

    Article  CAS  Google Scholar 

  7. Xu T, Xu Y, Li Y, Sang S, Wang Q, Zhu T, Nath M, Zhang B (2019) Corrosion mechanisms of magnesia-chrome refractories in copper slag and concurrent formation of hexavalent chromium. J Alloys Compd 786:306–313. https://doi.org/10.1016/j.jallcom.2019.01.314

    Article  CAS  Google Scholar 

  8. Hong JH, Yeoh FY (2020) Mechanical properties and corrosion resistance of cobalt-chrome alloy fabricated using additive manufacturing. Mater Today Proc 29:196–201. https://doi.org/10.1016/j.matpr.2020.05.543

    Article  CAS  Google Scholar 

  9. Luo Y, Ding J, Hai J, Tan W, Hao R, Qiu G (2020) Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating. Environ Pollut 260:114046. https://doi.org/10.1016/j.envpol.2020.114046

    Article  CAS  PubMed  Google Scholar 

  10. Jafari M, Enayati MH, Salehi M, Nahvi SM, Park CG (2013) Improvement in tribological properties of HVOF sprayed WC–Co coatings using electroless Ni–P coated feedstock powders. Surf Coat Technol 235:310–317. https://doi.org/10.1016/j.surfcoat.2013.07.059

    Article  CAS  Google Scholar 

  11. Jafari M, Han J-C, Seol J-B, Park C-G (2017) Tribological properties of HVOF-sprayed WC-Co coatings deposited from Ni-plated powders at elevated temperature. Surf Coat Technol 327:48–58. https://doi.org/10.1016/j.surfcoat.2017.08.026

    Article  CAS  Google Scholar 

  12. Sabzi M, Dezfuli SM, Mirsaeedghazi SM (2018) The effect of pulse-reverse electroplating bath temperature on the wear/corrosion response of Ni-Co/tungsten carbide nanocomposite coating during layer deposition. Ceram Int 44:19492–19504

    Article  CAS  Google Scholar 

  13. Sassi W, Boubaker H, Bahar S, Othman M, Ghorbal A, Zrelli R, Hihn J-Y (2020) A challenge to succeed the electroplating of nanocomposite Ni–Cr alloy onto porous substrate under ultrasonic waves and from a continuous flow titanium nanofluids. J Alloys Compd 828:154437. https://doi.org/10.1016/j.jallcom.2020.154437

    Article  CAS  Google Scholar 

  14. Sassi W, Msaadi R, Hihn J-Y, Zrelli R (2020) Effect of pyridine as advanced polymeric inhibitor for pure copper: adsorption and corrosion mechanisms. Polym Bull. https://doi.org/10.1007/s00289-020-03311-3

    Article  Google Scholar 

  15. Yoon W, Hanson J, Mcbreen J, Yang X (2006) A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD. Electrochem Commun 8:859–862. https://doi.org/10.1016/j.elecom.2006.03.030

    Article  CAS  Google Scholar 

  16. Zhuzhelskii DV, Tolstopjatova EG, Volkov AI, Eliseeva SN, Láng GG, Kondratiev VV (2020) Insights on the electrodeposition mechanism of tungsten oxide into conducting polymers: potentiostatic vs. potentiodynamic deposition. Synth Met 267:116469. https://doi.org/10.1016/j.synthmet.2020.116469

    Article  CAS  Google Scholar 

  17. Mohammadnezhad G, Momeni MM, Nasiriani F (2020) Enhanced photoelectrochemical performance of tin oxide decorated tungsten oxide doped TiO2 nanotube by electrodeposition for water splitting. J Electroanal Chem 876:114505. https://doi.org/10.1016/j.jelechem.2020.114505

    Article  CAS  Google Scholar 

  18. Zhang L, Huang T, Zhang M, Guo X, Yuan Z (2008) Studies on the capability and behavior of adsorption of thallium on nano-Al2O3. J Hazard Mater 157:352–357. https://doi.org/10.1016/j.jhazmat.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Ji C, Li B (2019) Synthesis and properties of Ni–W/ZrO2 nanocomposite coating fabricated by pulse electrodeposition. Results Phys 13:102242. https://doi.org/10.1016/j.rinp.2019.102242

    Article  Google Scholar 

  20. Zhang W, Zhang L, Hua T, Li Y, Zhou X, Wang W, You Z, Wang H, Li M (2020) The mechanism for adsorption of Cr(VI) ions by PE microplastics in ternary system of natural water environment. Environ Pollut 257:113440. https://doi.org/10.1016/j.envpol.2019.113440

    Article  CAS  PubMed  Google Scholar 

  21. Duhin A, Inberg A, Eliaz N, Gileadi E (2015) Electroless plating of rhenium-based alloys with nickel, cobalt and iron. Electrochim Acta 174:660–666. https://doi.org/10.1016/j.electacta.2015.06.033

    Article  CAS  Google Scholar 

  22. Wu W, Eliaz N, Gileadi E (2016) Electrodeposition of Re-Ni alloys from aqueous solutions with organic additives. Thin Solid Films 616:828–837. https://doi.org/10.1016/j.tsf.2016.10.012

    Article  CAS  Google Scholar 

  23. Ifergane S, Pinkas M, Barkay Z, Brosh E, Ezersky V, Beeri O, Eliaz N (2017) The relation between aging temperature, microstructure evolution and hardening of Custom 465® stainless steel. Mater Charact 127:129–136. https://doi.org/10.1016/j.matchar.2017.02.023

    Article  CAS  Google Scholar 

  24. Nishide A, Kim M, Takagi K, Himeno A, Sanada T, Sasakawa C, Mizushima T (2013) Structural basis for the recognition of Ubc13 by the Shigella flexneri effector OspI. J Mol Biol 425:2623–2631. https://doi.org/10.1016/j.jmb.2013.02.037

    Article  CAS  PubMed  Google Scholar 

  25. Mizushima Y, Okawa I, Nonaka K (2019) Model predictive control for autonomous vehicles with speed profile shaping. IFAC Pap 52:31–36. https://doi.org/10.1016/j.ifacol.2019.08.044

    Article  Google Scholar 

  26. Sassi W, Dhouibi L, Hihn J-Y, Berçot P, Rezrazi M, Ammar S (2019) Corrosion protection of Cu electrical cable by W-Ni composite coatings doped with TiO2 nanoparticles: influence of pulse currents. J Mater Eng Perform 28:5639–5648. https://doi.org/10.1007/s11665-019-04288-5

    Article  CAS  Google Scholar 

  27. Jin P, Sun C, Zhang Z, Zhou C, Williams T (2020) Fabrication of the Ni-W-SiC thin film by pulse electrodeposition. Surf Coat Technol 392:125738. https://doi.org/10.1016/j.surfcoat.2020.125738

    Article  CAS  Google Scholar 

  28. Porto MB, Costa JM, de Almeida Neto AF (2020) Ni-W alloys and their anticorrosive properties: Ni removal efficiency from galvanic wastewater by electrodeposition. J Water Process Eng 36:101250. https://doi.org/10.1016/j.jwpe.2020.101250

    Article  Google Scholar 

  29. Portela DG, de Morais Nepel TC, Costa JM, de Almeida Neto AF (2020) Two-stages electrodeposition for the synthesis of anticorrosive Ni–W-Co coating from a deactivated nickel bath. Mater Sci Eng B 260:114611. https://doi.org/10.1016/j.mseb.2020.114611

    Article  CAS  Google Scholar 

  30. Wasekar NP, Bathini L, Ramakrishna L, Rao DS, Padmanabham G (2020) Pulsed electrodeposition, mechanical properties and wear mechanism in Ni-W/SiC nanocomposite coatings used for automotive applications. Appl Surf Sci 527:146896. https://doi.org/10.1016/j.apsusc.2020.146896

    Article  CAS  Google Scholar 

  31. Oliveira JAM, de Almeida AF, Campos ARN, Prasad S, Alves JJN, de Santana RAC (2021) Effect of current density, temperature and bath pH on properties of Ni–W–Co alloys obtained by electrodeposition. J Alloys Compd 853:157104. https://doi.org/10.1016/j.jallcom.2020.157104

    Article  CAS  Google Scholar 

  32. Sassi W, Dhouibi L, Berçot P, Rezrazi M, Triki E (2012) Comparative study of protective nickel–tungsten deposit behavior obtained by continuous and pulsed currents from citrate–ammonia media. Surf Coat Technol 206:4235–4241. https://doi.org/10.1016/j.surfcoat.2012.04.030

    Article  CAS  Google Scholar 

  33. Sassi W, Dhouibi L, Berçot P, Rezrazi M, Triki E (2014) Study of the electroplating mechanism and physicochemical proprieties of deposited Ni-W-Silicate composite alloy. Electrochim Acta 117:443–452. https://doi.org/10.1016/j.electacta.2013.11.159

    Article  CAS  Google Scholar 

  34. Sassi W, Dhouibi L, Berçot P, Rezrazi M (2015) The effect of SiO2 nanoparticles dispersion on physico-chemical properties of modified Ni–W nanocomposite coatings. Appl Surf Sci 324:369–379. https://doi.org/10.1016/j.apsusc.2014.10.142

    Article  CAS  Google Scholar 

  35. Sassi W, Dhouibi L, Berçot P, Rezrazi M, Triki E (2012) Effect of pyridine on the electrocrystallization and corrosion behavior of Ni–W alloy coated from citrate–ammonia media. Appl Surf Sci 263:373–381. https://doi.org/10.1016/j.apsusc.2012.09.065

    Article  CAS  Google Scholar 

  36. Rodriguez-Torres I, Valentin G, Lapicque F (1999) Electrodeposition of zinc–nickel alloys from ammonia-containing baths. J Appl Electrochem 29:1035–1044. https://doi.org/10.1023/A:1003610617785

    Article  CAS  Google Scholar 

  37. Du Z, Hu D, Guo C, Ren X, Li C (2020) Experimental investigation and thermodynamic description of the Ni–Ti–W system. Calphad 71:102194. https://doi.org/10.1016/j.calphad.2020.102194

    Article  CAS  Google Scholar 

  38. Mahalingam DK, Bera P (2021) Characterization and microhardness of Ni−W−P coatings electrodeposited with gluconate bath. Surf Interfaces 22:100769. https://doi.org/10.1016/j.surfin.2020.100769

    Article  CAS  Google Scholar 

  39. Shaikh MSNM, Ahuja BB (2020) Optimization of electroless nickel tungsten composite coating on 3D-printed ABS substrate for maximum tungsten content. J Inst Eng India Ser C. https://doi.org/10.1007/s40032-020-00630-2

    Article  Google Scholar 

  40. Sribalaji M, Asiq Rahman OS, Arun Kumar P, Suresh Babu K, Wasekar NP, Sundararajan G, Keshri AK (2017) Role of silicon carbide in phase-evolution and oxidation behaviors of pulse electrodeposited nickel-tungsten coating. Metall Mater Trans A 48:501–512. https://doi.org/10.1007/s11661-016-3847-2

    Article  CAS  Google Scholar 

  41. Mahidashti Z, Aliofkhazraei M, Lotfi N (2018) Review of nickel-based electrodeposited tribo-coatings. Trans Indian Inst Met 71:257–295. https://doi.org/10.1007/s12666-017-1175-x

    Article  CAS  Google Scholar 

  42. Hassan AW, Noordin MY, Izman S, Denni K, Nazim EM (2019) Modification of an electroplated nickel interlayer surface by annealing heat treatment for diamond deposition on tungsten carbide. Metallogr Microstruct Anal 8:201–211. https://doi.org/10.1007/s13632-018-0512-8

    Article  CAS  Google Scholar 

  43. Mohammadpour Z, Zare HR (2020) Improving the corrosion resistance of the nickel-tungsten alloy by optimization of the electroplating conditions. Trans Indian Inst Met 73:937–944. https://doi.org/10.1007/s12666-020-01894-z

    Article  CAS  Google Scholar 

  44. Jang YH, Kim SS, Han SZ, Lim CY, Kim CJ (2006) Corrosion and stress corrosion cracking behavior of equal channel angular pressed oxygen-free copper in 3.5% NaCl solution. J Mater Sci 41:4293–4297. https://doi.org/10.1007/s10853-006-6992-y

    Article  CAS  Google Scholar 

  45. Slobodyan ZV, Mahlatyuk LA, Kupovych RB, Yatsyuk RA, Zin’ YaI (2017) Specific features of the contact corrosion of aluminum and copper in NaCl solutions. Mater Sci 53:316–323. https://doi.org/10.1007/s11003-017-0077-8

    Article  CAS  Google Scholar 

  46. Shibli SMA, Dilimon VS, Mohan A (2007) Development of nickel incorporated aluminum alloy matrix as an efficient sacrificial anode. J Appl Electrochem 37:1015–1019. https://doi.org/10.1007/s10800-007-9342-0

    Article  CAS  Google Scholar 

  47. Quiroga Argañaraz MP, Ribotta SB, Folquer ME, Benítez G, Rubert A, Gassa LM, Vela ME, Salvarezza RC (2013) The electrochemistry of nanostructured Ni–W alloys. J Solid State Electrochem 17:307–313. https://doi.org/10.1007/s10008-012-1965-3

    Article  CAS  Google Scholar 

  48. Hu Y, Peng J, Pan M, Qiu W, Wu R, Hu J, Hu N, Cheng F, Huang R, Li F, Chen D, Zhang Q, Li P (2021) Wafer-scale epitaxial single-crystalline Ni(111) films on sapphires for graphene growth. J Mater Sci 56:3220–3229. https://doi.org/10.1007/s10853-020-05450-4

    Article  CAS  Google Scholar 

  49. Zuo W, Yang C, Zang L, Liang C, Liu X (2021) One-step hydrothermal synthesis of flower-like MnO2–NixCo1−x(OH)2@carbon felt positive electrodes with 3D open porous structure for high-performance asymmetric supercapacitors. J Mater Sci 56:4797–4809. https://doi.org/10.1007/s10853-020-05548-9

    Article  CAS  Google Scholar 

  50. Shen Y, Lu S, Xu W, Lv A, Wang Z, Wang H, Liu G, Zhang Y (2021) Fabrication of composite material with Pd nanoparticles and graphene on nickel foam for its excellent electrocatalytic performance. Electrocatalysis 11:522–535. https://doi.org/10.1007/s12678-020-00611-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhia Msaadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Msaadi, R., Sassi, W., Hihn, JY. et al. Evolution of Electrochemical Behavior, Electrical Conductivity, and Microhardness of Electrodeposited W Coatings Enhanced by Ni During Long Immersion in 3% NaCl Media. Chemistry Africa 4, 575–583 (2021). https://doi.org/10.1007/s42250-021-00234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00234-y

Keywords

Navigation