Skip to main content
Log in

Oxidation Pretreatment to Improve the Sensitivity of Acetylcholinesterase-Based Detection of Thioorganophosphates

  • BIOPHYSICAL CHEMISTRY AND PHYSICAL AND CHEMICAL BIOLOGY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Bioassays based on the determination of acetylcholinesterase (AChE) activity are used for the detection and neurotoxicity evaluation of organophosphate insecticides. However, AChE bioassays are convenient for oxo and iso forms, whereas the limits of detection (LODs) of thio forms, being used as commercial insecticide preparations are significantly higher. In this study various malathion concentrations (1 × 10–9–5 × 10–4 mol/L) were treated with the oxidizing agent, N-bromosuccinimide (NBS) in concentration ratios: 1 : 1, 1 : 2, 1 : 10, and 1 : 20 to find efficient oxidation resulting in as possible as lower LODs of the used assays based on electric eel AChE (20 min-preincubation) and immobilized AChE incorporated in flow-injection analysis (FIA) system. Malathion–NBS ratio of 1 : 10 was found as the most efficient and resulted in a decrease of LOD about 100 times for both AChE bioassays. In the case of free AChE the obtained LOD values after the NBS-induced oxidation of thioorganophosphates (1 : 10), malathion, diazinon, and chlorpyrifos were as follows: 1.0 × 10–8, 1.3 × 10–8, and 1.0 × 10–8 mol/L, respectively. In addition, LOD values for the FIA-AChE system involving a pre-step with NBS induced the following LOD values: 7.2 × 10–7, 1.3 × 10–6, and 1.8 × 10–7 for malathion, diazinon, and chlorpyrifos, respectively. Furthermore, IC50 values of the corresponding oxo forms were found to be similar to those for the studied thioorganophosphates, which indicates a potential stoichiometric conversion of the thio to oxo forms under the established oxidation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Scheme 2.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. B. Čolović, T. Lazarević-Pašti, and V. M. Vasić, in Chlorpyrifos: Toxicological Properties, Uses and Effects on Human Health and the Environment (Nova Science, New York, 2015), p. 87.

    Google Scholar 

  2. D. Dara and A. P. Drabovich, J. Environ. Sci. 125, 735 (2023). https://doi.org/10.1016/j.jes.2022.03.033

    Article  CAS  Google Scholar 

  3. T. D. Lazarević-Pašti and M. B. Čolović, in Organophosphorus Pesticides: Structural Characteristics, Mechanisms of Toxicity, and Effects of Exposure on Health (Nova Science, New York, 2016), p. 1.

    Google Scholar 

  4. T. Thosapornvichai, C. Huangteerakul, A. N. Jensen, and L. T. Jensen, Environ. Toxicol. Pharm. 96, 104000 (2022). https://doi.org/10.1016/j.etap.2022.104000

  5. X. Wu, J. Li, Z. Zhou, Z. Lin, S. Pang, P. Bhatt, S. Mishra, and S. Chen, Front. Microbiol. 121, 717286 (2021). https://doi.org/10.3389/fmicb.2021.717286

  6. M. B. Čolović, D. Z. Krstić, T. D. Lazarevic-Pašti, A. M. Bondžić, and V. M. Vasić, Curr. Neuropharmacol. 11, 315 (2013). https://doi.org/10.2174/1570159X11311030006

    Article  PubMed  PubMed Central  Google Scholar 

  7. A.-L. Oropesa, S. Sánchez, and F. Soler, Ibis 159, 510 (2017). https://doi.org/10.1111/ibi.12476

    Article  Google Scholar 

  8. J. J. Chaves, F. Soler, M. Perez-Lopez, and A. L. Oropesa, Rev. Toxicol. 34, 124 (2017).

    Google Scholar 

  9. M. B. Čolović, V. M. Vasić, N. S. Avramović, M. M. Gajić, D. M. Djurić, and D. Z. Krstić, Toxicol. Lett. 233, 29 (2015). https://doi.org/10.1016/j.toxlet.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  10. Y. Zhao, C. Fang, C. Jin, Z. Bao, G. Yang, and Y. Jin, Pestic. Biochem. Phys. 182, 105028 (2022). https://doi.org/10.1016/j.pestbp.2021.105028

  11. M. B. Čolović, D. Z. Krstić, V. M. Vasić, A. M. Bondžić, G. S. Ušćumlić, and S. D. Petrović, Hem. Ind. 67, 217 (2013). https://doi.org/10.2298/HEMIND120323060C

    Article  CAS  Google Scholar 

  12. Y. Zhao and R. Zheng, Int. J. Electrochem. Sci. 16, 211221 (2021). https://doi.org/10.20964/2021.12.30

  13. J. Li, H. Chang, N. Zhang, Y. He, D. Zhang, B. Liu, and Y. Fang, Talanta 2531, 124092 (2023). https://doi.org/10.1016/j.talanta.2022.124092

  14. Y.-H. Chu,Y. Li, Y.-T. Wang, B. Li, and Y.-H. Zhang, Food Chem. 254, 80 (2018). https://doi.org/10.1016/j.foodchem.2018.01.187

    Article  CAS  PubMed  Google Scholar 

  15. A. Sahin, K. Dooley, D. M. Cropek, A. C. West, and S. Banta, Sens. Actuators, B 158, 353 (2011). https://doi.org/10.1016/j.snb.2011.06.034

    Article  CAS  Google Scholar 

  16. D. Krstić, M. Čolović, K. Krinulović, D. Djurić, and V. Vasić, Gen. Physiol. Biophys. 26, 247 (2007). https://pubmed.ncbi.nlm.nih.gov/18281741/

    PubMed  Google Scholar 

  17. M. B. Čolović, D. Z. Krstić, G. S. Ušćumlić, and V. M. Vasić, Pestic. Biochem. Phys. 100, 16 (2011). https://doi.org/10.1016/j.pestbp.2011.01.010

    Article  CAS  Google Scholar 

  18. T. Matsushita, Y. Fujita, K. Omori, Y. Huang, Y. Matsui, and N. Shirasaki, Chemosphere 261, 127743 (2020). https://doi.org/10.1016/j.chemosphere.2020.127743

  19. X. Yang, J. Dai, L. Yang, M. Ma, S.-J. Zhao, X.‑G. Chen, and H. Xiao, J. Sci. Food Agric. 98, 2624 (2018). https://doi.org/10.1002/jsfa.8755

    Article  CAS  PubMed  Google Scholar 

  20. W. Li, R. Wu, J. Duan, C. P. Saint, and J. van Leeuwen, Water Res. 105, 1 (2016). https://doi.org/10.1016/j.watres.2016.08.052

    Article  CAS  PubMed  Google Scholar 

  21. A. A. Gouda, A. S. Amin, R. E. Sheikh, and M. A. Akl, Chem. Ind. Chem. Eng. Q. 16, 11 (2010). https://doi.org/10.2298/CICEQ090417003G

    Article  CAS  Google Scholar 

  22. T. Lazarević-Pašti, T. Momić, A. Onija, Lj. Vujisić, and V. Vasić, Microchim. Acta 170, 289 (2010). https://doi.org/10.1007/s00604-010-0324-2

    Article  CAS  Google Scholar 

  23. T. Lazarević-Pašti, M. Čolović, J. Savić, T. Momić, and V. Vasić, Pestic. Biochem. Phys. 100, 140 (2011). https://doi.org/10.1016/j.pestbp.2011.03.001

    Article  CAS  Google Scholar 

  24. A. Boškin, C. D. Tran, and M. Franko, Environ. Chem. Lett. 7, 267 (2009). https://doi.org/10.1007/s10311-008-0161-2

    Article  CAS  Google Scholar 

  25. I. Lyagin and E. Efremenko, Int. J. Mol. Sci. 22, 1761 (2021). https://doi.org/10.3390/ijms22041761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. P. Cetrangolo, J. Rusko, C. Gori, P. Carullo, G. Manco, M. Chino, and F. Febbraio, Sensors (Basel) 20, 1365 (2020). https://doi.org/10.3390/s20051365

    Article  CAS  PubMed  Google Scholar 

  27. T. D. Lazarević-Pašti, A. M. Bondzić, I. A. Pašti, and V. M. Vasić, Pestic. Biochem. Phys. 104, 236 (2012). https://doi.org/10.1016/j.pestbp.2012.09.004

    Article  CAS  Google Scholar 

  28. M. Bavcon Kralj, P. Trebše, and M. Franko, Acta Chim. Slov. 53, 43 (2006). http://acta-arhiv.chem-soc.si/53/53-1-43.pdf

    Google Scholar 

  29. G. L. Ellman, K. D. Courtney, V. Andreas, and R. M. Featherstone, Biochem. Pharm. 7, 88 (1961). https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  30. D. Krstić, M. Čolović, M. Bavcon-Kralj, M. Franko, K. Krinulović, P. Trebše, and V. Vasić, J. Enzym. Inhib. Med. Ch. 23, 562 (2008). https://doi.org/10.1080/14756360701632031

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (contract no. 451-03-9/2022-14/200017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Čolović.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čolović, M.B., Krstić, D.Z. & Vasić, V.M. Oxidation Pretreatment to Improve the Sensitivity of Acetylcholinesterase-Based Detection of Thioorganophosphates. Russ. J. Phys. Chem. 97, 2894–2902 (2023). https://doi.org/10.1134/S0036024423120221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120221

Keywords:

Navigation