Skip to main content
Log in

Investigation of the Spectra of Electronic Transitions in Small Clusters of the Pigment Yellow 3

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Electronic absorption spectra were calculated in the visible region for clusters of the pigment Yellow 3 that comprise one, two, and four molecules. The geometry was optimized by the PBEh-3c and B3LYP-D4/def2-SVPD methods. The results obtained by the B3LYP-D4/def2-SVPD method correlate best with the experimental data. The spectral characteristics were calculated by the TD-DFT and sTD-DFT methods with the PBE0 functional and the def2-SVPD basis set. By analyzing the natural transition orbitals (NTOs) and changing the electron density during the formation of excited states of the studied clusters, it was shown that the main contribution to the spectral lines in the visible range is made by the density transfer from the aromatic rings to the nitro group and the conjugated bond system in the center of the molecule. In this case, for the crystalline state of matter, all excited states are delocalized, and the main contribution to the intermolecular transfer of the electron density is made by the formation of excitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. N. G. Laptev and A. M. Bogoslovskii, Chemistry of Dyes (Khimiya, Moscow, 1970) [in Russian].

    Google Scholar 

  2. A. Whitaker, Zeitschr. Kristallogr. 163, 19 (1983).

    CAS  Google Scholar 

  3. K. Venkataraman, The Chemistry of Synthetic Dyes (Academic, New York, 1971), Vol. 3.

    Google Scholar 

  4. K. Venkataraman, The Chemistry of Synthetic Dyes (Elsevier, Amsterdam, 1971), Vol. 4.

    Google Scholar 

  5. N. Kh. Ibraev, E. V. Seliverstova, and V. Ya. Artyukhov, Russ. Phys. J. 57, 1160 (2014).

    Article  Google Scholar 

  6. A. Whitaker, J. Soc. Dyers Colourists 99, 121 (1983).

    Article  CAS  Google Scholar 

  7. S. Grimme, J. G. Brandenburg, C. Bannwarth, and A. Hansen, J. Chem. Phys. 143, 054107 (2015). https://doi.org/10.1063/1.4927476

  8. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  9. E. Caldeweyher, S. Ehlert, and A. Hansen, J. Chem. Phys. 150, 154122 (2019). https://doi.org/10.1063/1.5090222

  10. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010). https://doi.org/10.1063/1.3484283

  11. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). https://doi.org/10.1103/physrevlett.52.997

    Article  CAS  Google Scholar 

  12. C. Bannwarth and S. Grimme, Comput. Theor. Chem. 1040–1041, 45 (2014). https://doi.org/10.1016/j.comptc.2014.02.023

    Article  CAS  Google Scholar 

  13. M. de Wergifosse, J. Seibert, and S. Grimme, J. Chem. Phys. 153, 084116 (2020). https://doi.org/10.1063/5.0020543

  14. J. B. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996). https://doi.org/10.1063/1.472933

    Article  CAS  Google Scholar 

  15. D. Jacquemin, E. A. Perpète, G. E. Scuseria, et al., J. Chem. Theory Comput. 4, 123 (2008). https://doi.org/10.1021/ct700187z

    Article  CAS  PubMed  Google Scholar 

  16. D. Jacquemin, A. Planchat, C. Adamo, and B. Mennucci, J. Chem. Theory Comput. 8, 2359 (2012). https://doi.org/10.1021/ct300326f

    Article  CAS  PubMed  Google Scholar 

  17. D. Jacquemin, E. A. Perpète, I. Ciofini, and C. Adamo, Theor. Chem. Acc. 120, 405 (2008). https://doi.org/10.1007/s00214-008-0424-9

    Article  CAS  Google Scholar 

  18. J. Han, X. Liu, C. Sun, et al., RSC Adv. 8, 29589 (2018). https://doi.org/10.1039/c8ra05812a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H.-H. G. Tsai, H.-L. S. Sun, and C.-J. Tan, J. Phys. Chem. A 114, 4065 (2010). https://doi.org/10.1021/jp100022y

    Article  CAS  PubMed  Google Scholar 

  20. V. Mahamiya, P. Bhattacharyya, and A. Shukla, ACS Omega 7, 48261 (2022). https://doi.org/10.1021/acsomega.2c06373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010). https://doi.org/10.1063/1.3484283

  22. R. Mera-Adasme, W.-H. Xu, D. Sundholm, and F. Mendizabal, Phys. Chem. Chem. Phys. 18, 27877 (2016). https://doi.org/10.1039/c6cp04627d

    Article  CAS  PubMed  Google Scholar 

  23. F. Neese, WIREs Comput. Mol. Sci. 8, e1327 (2017). https://doi.org/10.1002/wcms.1327

  24. A. R. Allouche, J. Comput. Chem. 32, 174 (2011). https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

  25. R. Berraud-Pache, F. Neese, G. Bistoni, and R. Izsák, J. Chem. Theory Comput. 16, 564 (2020). https://doi.org/10.1021/acs.jctc.9b00559

    Article  CAS  PubMed  Google Scholar 

  26. R. L. Martin, J. Chem. Phys. 118, 4775 (2003). https://doi.org/10.1063/1.1558471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Degtyarev.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degtyarev, A.A., Rostova, D.P., D’yachkova, T.P. et al. Investigation of the Spectra of Electronic Transitions in Small Clusters of the Pigment Yellow 3. Russ. J. Phys. Chem. 97, 2171–2180 (2023). https://doi.org/10.1134/S0036024423100059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423100059

Keywords:

Navigation