Skip to main content
Log in

Regulating the Synthesis, Optical and Photocatalytic Activity of MgMoO4 Nanoparticles

  • PHOTOCHEMISTRY, MAGNETOCHEMISTRY, MECHANOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A simple sol–gel method have been used to synthesize MgMoO4 nanoparticles with different particle sizes and surface morphology, and characterized by thermogravimetric and X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV–Vis spectroscopy and electrochemical workstation. The particle size of MgMoO4 nanoparticles prepared by addition ammonium cyanate, urea and without additives are 50, 80, and 100 nm, respectively. The MgMoO4 nanoparticles exhibit high ultraviolet absorption coefficient and visible light reflectance. The Eg value and the specific capacity of MgMoO4 nanoparticles decreases with the increasing of particle size. The spherical MgMoO4 nanoparticles exhibit high charge transfer and separation efficiency. The internal correlation mechanism between the optical properties and photocatalytic activity of MgMoO4 nanoparticles has been studied. The MgMoO4 nanoparticles exhibit high photocatalytic activity for the photocatalytic degradation of methyl red dye by UV light irradiation can be ascribed to the synergistic effect of surface active site, hole, hydroxyl radical and superoxide radical. This simple process can be used to synthesize other molybdate salts for applications in the field of photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Singh, J. Singh, and A. Singh, Int. J. Hydrogen Energy 33, 4260 (2008).

    Article  CAS  Google Scholar 

  2. Y. Jin, J. Zhang, S. Lü, H. Zhao, X. Zhang, and X. Wang, J. Phys. Chem. C 112, 5860 (2008).

    Article  CAS  Google Scholar 

  3. T. Thongtem, A. Phuruangrat, and S. Thongtem, Mater. Lett. 62, 454 (2008).

    Article  CAS  Google Scholar 

  4. C. Lim, J. Lumin. 132, 1774 (2012).

    Article  CAS  Google Scholar 

  5. M. Kumar, R. Singh, H. Khajuria, and H. Sheikh, J. Mater. Sci. Mater. Electron. 28, 9423 (2017).

    Article  CAS  Google Scholar 

  6. H. Gao, S. Wang, Y. Wang, H. Yang, L. Fang, X. Chen, et al., J. Electron. Mater. 51, 5230 (2022).

    Article  CAS  Google Scholar 

  7. D. Wang, G. Du, D. Han, Q. Su, M. Zhang, S. Ding, and B. Xu, J. Alloys Compd. 859, 157792 (2021).

  8. Q. Ma, X. Li, G. Li, and Z. Shao, J. Mater. Sci. 55, 13905 (2020).

    Article  CAS  Google Scholar 

  9. X. Xia, W. Lei, Q. Hao, W. Wang, and X. Wang, Electrochim. Acta 99, 253 (2013).

    Article  CAS  Google Scholar 

  10. H. Duan, Z. Zhou, Y. Zhao, and Y. Dong, Dalton Trans. 51, 2493 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. M. Minakshi, D. Mitchell, A. Munnangi, A. Barlow, and M. Fichtner, Nanoscale 10, 13277 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. H. Gao, Y. Wang, S. Wang, H. Yang, and Z. Yi, Solid State Sci. 129, 106909 (2022).

  13. C. Hao, Y. Guo, S. Xian, W. Zheng, H. Gao, and X. Wang, J. Energ. Stor. 41, 102972 (2021).

  14. L. Zhang, W. He, M. Ling, K. Shen, Y. Liu, and S. Guo, Electrochim. Acta 252, 322 (2017).

    Article  CAS  Google Scholar 

  15. M. Gancheva, T. Rojac, R. Iordanova, I. Piroeva, and P. Ivanov, Ceram. Int. 48, 17149 (2022).

    Article  CAS  Google Scholar 

  16. L. Zhang, W. He, K. Shen, Y. Liu, and S. P. Guo, J. Phys. Chem. Solids 115, 215 (2018).

    Article  Google Scholar 

  17. A. Santiago, M. Oliveira, R. Ribeiro, R. Tranquilin, E. Longo, S. de Lazaro, et al., Cryst. Growth Des. 20, 6592 (2020).

    Article  CAS  Google Scholar 

  18. J. Haetge, C. Suchomski, and T. Brezesinski, Small 9, 2541 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. G. Braziulis, G. Janulevicius, R. Stankeviciute, and A. Zalga, J. Therm. Anal. Calorim. 118, 613 (2014).

    Article  CAS  Google Scholar 

  20. H. Gao, Y. Wang, Q. Gao, X. Pan, S. Wang, H. Yang, et al., Optik 241, 167040 (2021).

  21. P. Du and J. Yu, Mater. Res. Bull. 70, 553 (2015).

    Article  CAS  Google Scholar 

  22. H. Lakhlifi, Y. El Jabbar, R. El Ouatib, L. Er-Rakho, S. Guillemet-Fritsch, and B. Durand, Surf. Interface 21, 100718 (2020).

  23. A. A. Aboul-Enein and A. E. Awadallah, Mater. Chem. Phys. 238, 121879 (2019).

  24. M. Gancheva, T. Rojac, R. Iordanova, I. Piroeva, and P. Ivanov, Ceram. Int. 48, 17149 (2022).

    Article  CAS  Google Scholar 

  25. S. Wannapop, T. Thongtem, and S. Thongtem, J. Phys. Chem. Solids 74, 677 (2013).

    Article  CAS  Google Scholar 

  26. S. Wang, Q. Li, X. Zu, X. Xiang, W. Liu, and S. Li, J. Magn. Magn. Mater. 419, 464 (2016).

    Article  CAS  Google Scholar 

  27. G. Garbarino, T. K. Phung, G. Pampararo, P. Riani, and G. Busca, Catal. Today 378, 57 (2021).

    Article  CAS  Google Scholar 

  28. H. Lakhlifi, Y. El Jabbar, R. El Ouatib, L. Er-Rakho, S. Guillemet-Fritsch, and B. Durand, Surf. Interface 21, 100718 (2020).

  29. J. Lin, R. Zong, M. Zhou, and Y. Zhu, Appl. Catal. B: Environ. 89, 425 (2009).

    Article  CAS  Google Scholar 

  30. D. A. Spasskii, V. N. Kolobanov, V. V. Mikhailin, L. Y. Berezovskaya, L. I. Ivleva, and I. S. Voronina, Opt. Spectrosc. 106, 556 (2009).

    Article  CAS  Google Scholar 

  31. J. Ruiz-Fuertes, A. Friedrich, N. Garg, V. Monteseguro, K. Radacki, D. Errandonea, et al., Phys. Rev. B 106, 064101 (2022).

  32. M. Gancheva, T. Rojac, R. Iordanova, I. Piroeva, and P. Ivanov, Ceram. Int. 48, 17149 (2022).

    Article  CAS  Google Scholar 

  33. J. A. Rodriguez, J. C. Hanson, S. Chaturvedi, A. Maiti, and J. L. Brito, J. Chem. Phys. 112, 935 (2000).

    Article  CAS  Google Scholar 

  34. L. Zhang, W. He, K. Shen, Y. Liu, and S. Guo, J. Phys. Chem. Solids 115, 215 (2018).

    Article  Google Scholar 

  35. A. A. G. Santiago, R. L. Tranquilin, P. Botella, F. J. Manjón, D. Errandonea, C. A. Paskocimas, et al., J. Alloys Compd. 813, 152235 (2020).

  36. D. Kang and S. Cho, J. Korean Inst. Surf. Eng. 49, 81 (2016).

    Article  CAS  Google Scholar 

  37. G. S. Kamble and Y. C. Ling, Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  38. S. Wang, X. Chen, L. Fang, H. Gao, M. Han, X. Chen, et al., Nucl. Anal. 1, 100026 (2022).

  39. N. Karnchana, A. Phuruangrat, S. Thongtem, and T. Thongtem, Russ. J. Phys. Chem. A 96, 1805 (2022).

    Article  CAS  Google Scholar 

  40. Z. Xiu, D. Zhang, and J. Wang, Russ. J. Phys. Chem. A 95, 1255 (2021).

    Article  CAS  Google Scholar 

  41. Y. Wang and J. Song, Russ. J. Phys. Chem. A 94, 211 (2020).

    Article  CAS  Google Scholar 

  42. V. Rodríguez-González, S. Obregón, D. A. Patrón-Soberano, C. Terashima, and A. Fujishima, Appl. Catal. B: Environ. 270, 118853 (2020).

  43. W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, and L. C. Sim, Environ. Sci. Pollut. R. 27, 2522 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Talent Introduction Project (202100105) of Henan Vocational University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqing Xuan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, Z., Xuan, C. Regulating the Synthesis, Optical and Photocatalytic Activity of MgMoO4 Nanoparticles. Russ. J. Phys. Chem. 97, 2060–2069 (2023). https://doi.org/10.1134/S0036024423090297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090297

Keywords:

Navigation