Skip to main content
Log in

Fabrication and Characterization of BaMoO4-Coupled CaWO4 Heterojunction Micro/Nanocomposites with Enhanced Photocatalytic Activity Towards MB and CIP Degradation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The polyacrylamide gel method combined with low- temperature calcination technology (PGMCLCT) have been successfully used to synthesize BaMoO4-coupled CaWO4 heterojunction micro/nanocomposites (BCCHMNs) with excellent photoluminescence properties and enhanced photocatalytic activity towards methylene blue (MB) and ciprofloxacin (CIP) degradation. The photoluminescent properties and photocatalytic activity of BCCHMNs strongly depend on the special interfacial contact between BaMoO4 and CaWO4. Phase structure, functional group, oxidation state, and microstructure analysis confirm that the BCCHMNs contains only BaMoO4 and CaWO4 phases, without any other impurities, and that the interface between BaMoO4 and CaWO4 forms a type II band arrangement heterojunction. The BaMoO4/10 wt% CaWO4 heterojunction micro/nanocomposites exhibit two obvious emission peaks at 470 and 490 nm under the excitation wavelength of 311 nm. The BaMoO4/15 wt% CaWO4 heterojunction micro/nanocomposites exhibit highest photocatalytic activity of about 95.433% for the degradation of MB and 97.886% for the degradation of CIP, due to the high charge transfer and separation efficiency, and optimal initial dye or CIP concentration and photocatalyst content are 20 mg/L and 1 g/L, respectively. With the increase of CaWO4 mass percentage, the photoluminescence and photocatalysis of BCCHMNs showed an opposite trend. The dependence of photoluminescence and photocatalysis on special interface contact and adsorbed oxygen provides an idea to study other types of metal oxide heterojunctions for the degradation of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. O. Surucu, Electrochemical removal and simultaneous sensing of mercury with inductively coupled plasma-mass spectrometry from drinking water. Mater. Today Chem. 23, 100639 (2022).

    Article  CAS  Google Scholar 

  2. H.J. Gao, S.F. Wang, L.M. Fang, G.A. Sun, X.P. Chen, S.N. Tang, H. Yang, G.Z. Sun, and D.F. Li, Nanostructured spinel-type M (M= Mg Co, Zn) Cr2O4 oxides: novel adsorbents for aqueous Congo red removal. Mater. Today Chem. 22, 100593 (2021).

    Article  CAS  Google Scholar 

  3. H. Liu, S. Wang, H. Gao, H. Yang, F. Wang, X. Chen, S. Tang, Z. Yi, and D. Li, A simple polyacrylamide gel route for the synthesis of MgAl2O4 nanoparticles with different metal sources as an efficient adsorbent: Neural network algorithm simulation, equilibrium, kinetics and thermodynamic studies. Sep. Purif. Technol. 281, 119855 (2022).

    Article  CAS  Google Scholar 

  4. T.T. Cheng, H.J. Gao, G.R. Liu, Z.S. Pu, S.F. Wang, Z. Yi, X.W. Wu, and H. Yang, Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions. Colloid. Surface. A 633, 127918 (2022).

    Article  CAS  Google Scholar 

  5. Z. Habibollahi, M. Peyravi, S. Khalili, and M. Jahanshahi, ZnO-based ternary nanocomposite for decolorization of methylene blue by photocatalytic dynamic membrane. Mater. Today Chem. 23, 100748 (2022).

    Article  CAS  Google Scholar 

  6. L. Li, H. Gao, G. Liu, S. Wang, Z. Yi, X. Wu, and H. Yang, Synthesis of carnation flower-like Bi2O2CO3 photocatalyst and its promising application for photoreduction of Cr(VI). Adv. Powder Technol. 33, 103481 (2022).

    Article  CAS  Google Scholar 

  7. B. Pant, G.P. Ojha, J. Acharya, and M. Park, Ag3PO4-TiO2-Carbon nanofiber composite: An efficient Visible-light photocatalyst obtained from eelectrospinning and hydrothermal methods. Sep. Purif. Technol. 276, 119400 (2021).

    Article  CAS  Google Scholar 

  8. T. Cheng, Q. Ma, H. Gao, S. Meng, Z. Lu, S. Wang, Z. Yi, X. Wu, G. Liu, X. Wang, and H. Yang, Enhanced photocatalytic activity, mechanism and potential application of Idoped-Bi4Ti3O12 photocatalysts. Mater. Today Chem. 23, 100750 (2022).

    Article  CAS  Google Scholar 

  9. R. Haounati, A. El Guerdaoui, H. Ouachtak, R. El Haouti, A. Bouddouch, N. Hafid, B. Bakiz, D.M.F. Santos, M. Labd Taha, A. Jada, A.A. Addi, Design of direct Z-scheme superb magnetic nanocomposite photocatalyst Fe3O4/Ag3PO4@ Sep for hazardous dye degradation. Sep. Purif. Technol. 277, 119399 (2021).

  10. T. Cheng, H. Gao, R. Li, S. Wang, Z. Yi, and H. Yang, Flexoelectricity-induced enhancement in carrier separation and photocatalytic activity of a photocatalyst. Appl. Surf. Sci. 566, 150669 (2021).

    Article  CAS  Google Scholar 

  11. A. Jiménez-Almarza, A. Lopez-Magano, R. Cano, B. Ortín-Rubio, D. Díaz-García, S. Gomez-Ruiz, I. Imaz, D. Maspoch, R. Mas-Balleste, and J. Alemán, Engineering covalent organic frameworks in the modulation of photocatalytic degradation of pollutants under visible light conditions. Mater. Today Chem. 22, 100548 (2021).

    Article  CAS  Google Scholar 

  12. H. Yang, A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 142, 111406 (2021).

    Article  CAS  Google Scholar 

  13. L. Liang, Y. Cong, F. Wang, L. Yao, and L. Shi, Fabrication of wide visible-light response porous graphitic carbon nitride with excellent visible light photocatalytic performance. Mater. Res. Express 6, 086207 (2019).

    Article  CAS  Google Scholar 

  14. L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J.A. Varela, and E. Longo, BaMoO4 powders processed in domestic microwave-hydrothermal: Synthesis, characterization and photoluminescence at room temperature. J. Phys. Chem. Solids 69, 2674 (2008).

    Article  CAS  Google Scholar 

  15. Y. Mao, J. Wei, Y. Zou, and L. Zhu, Controllable synthesis, characterization and photoluminescence properties of flower-like BaMoO4 hierarchical architectures. CrystEngComm 22, 3115 (2020).

    Article  CAS  Google Scholar 

  16. E. Orhan, M. Anicete-Santos, M.A. Maurera, F.M. Pontes, A.G. Souza, J. Andrès, and E. Longo, Towards an insight on the photoluminescence of disordered CaWO4 from a joint experimental and theoretical analysis. J. Solid State Chem. 178, 1284 (2005).

    Article  CAS  Google Scholar 

  17. S. Liu, S. Tian, and R. Xing, CaWO4 hierarchical nanostructures: Hydrothermal synthesis, growth mechanism and photoluminescence properties. CrystEngComm 13, 7258 (2011).

    Article  CAS  Google Scholar 

  18. L. Li, Y. Su, and G. Li, Size-induced symmetric enhancement and its relevance to photoluminescence of scheelite CaWO4 nanocrystals. Appl. Phys. Lett. 90, 054105 (2007).

    Article  CAS  Google Scholar 

  19. A.M. Huerta-Flores, I. Juárez-Ramírez, L.M. Torres-Martínez, J.E. Carrera-Crespo, T. Gómez-Bustamante, and O. Sarabia-Ramos, Synthesis of AMoO4 (A= Ca, Sr, Ba) photocatalysts and their potential application for hydrogen evolution and the degradation of tetracycline in water. J. Photoch. Photobio. A 356, 29 (2018).

    Article  CAS  Google Scholar 

  20. A. Gholami, and M. Maddahfar, Synthesis and characterization of barium molybdate nanostructures with the aid of amino acids and investigation of its photocatalytic degradation of methyl orange. J. Mater. Sci-Mater El. 27, 6773 (2016).

    Article  CAS  Google Scholar 

  21. S.K. Ray, Surface modifications, perspectives, and challenges of scheelite metal molybdate photocatalysts for removal of organic pollutants in wastewater. J. Hur, Ceram. Int. 46, 20608 (2020).

  22. M. Bazarganipour, Synthesis and characterization of BaMoO4 nanostructures prepared via a simple sonochemical method and their degradation ability of methylene blue. Ceram. Int. 42, 12617 (2016).

    Article  CAS  Google Scholar 

  23. S.M. Ghoreishi, Facile synthesis and characterization of CaWO4 nanoparticles using a new Schiff base as capping agent: Enhanced photocatalytic degradation of methyl orange. J. Mater. Sci-Mater El. 28, 14833 (2017).

    Article  CAS  Google Scholar 

  24. Z. Shan, Y. Wang, H. Ding, and F. Huang, Structure-dependent photocatalytic activities of MWO4 (M= Ca, Sr, Ba). J. Mol. Catal. A-Chem 302, 54 (2009).

    Article  CAS  Google Scholar 

  25. F.X. Nobre, R. Muniz, E.R. do Nascimento, R.S. Amorim, R.S. Silva, A. Almeida, J. Agostinho Moreira, P. B. Tavares, W.R. Brito, P.R.C. Couceiro, Y. Leyet, Y. Leyet, Hydrothermal temperature dependence of CaWO4 nanoparticles: Structural, optical, morphology and photocatalytic activity. J. Mater. Sci-Mater El. 32, 9776 (2021).

  26. K. Manjunath, and C.G. Thimmanna, Effect of organic fuels on surface area and photocatalytic activity of scheelite CaWO4 nanoparticles. Mater. Res. Express 5, 035030 (2018).

    Article  CAS  Google Scholar 

  27. A. Sobhani-Nasab, and M. Sadeghi, Preparation and characterization of calcium tungstate nanoparticles with the aid of amino acids and investigation its photocatalytic application. J. Mater. Sci-Mater El. 27, 7933 (2016).

    Article  CAS  Google Scholar 

  28. H. Farsi, Z. Barzgari, and S.Z. Askari, Sunlight-induced photocatalytic activity of nanostructured calcium tungstate for methylene blue degradation. Res. Chem. Intermediat. 41, 5463 (2015).

    Article  CAS  Google Scholar 

  29. S. Huang, Z. Lou, A. Shan, N. Zhu, K. Feng, and H. Yuan, An efficient near infrared photocatalyst of Er3+/Tm3+/Yb3+ tridoped (CaWO4@(TiO2/CaF2)) with multi-stage CaF2 nanocrystal formation. J. Mater. Chem. A 2, 16165 (2014).

    Article  CAS  Google Scholar 

  30. A. Vosoughifar, Photodegradation of dye in waste water using CaWO4/NiO nanocomposites; Co-precipitation preparation and characterization. J. Mater. Sci-Mater El. 29, 3194 (2018).

    Article  CAS  Google Scholar 

  31. S. Mohammadi-Aghdam, Green synthesis and characterization of Pr3+: CaWO4 nanostructures in the presence of maltose as a capping agent for photocatalytic degradation of rhodamine B. J. Mater. Sci-Mater El. 28, 17161 (2017).

    Article  CAS  Google Scholar 

  32. S.K. Ray, Y.K. Kshetri, D. Dhakal, C. Regmi, and S.W. Lee, Photocatalytic degradation of Rhodamine B and Ibuprofen with upconversion luminescence in Ag-BaMoO4:Er3+/Yb3+/K+ microcrystals. J. Photoch. Photobio. A 339, 36 (2017).

    Article  CAS  Google Scholar 

  33. S.K. Ray, D. Dhakal, and S.W. Lee, Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst. J. Photoch. Photobio. A 364, 686 (2018).

    Article  CAS  Google Scholar 

  34. P.N. Patil, U. Subramanian, and M. Jeyakanthan, Enhanced blue emission of CaWO4 in BaWO4/CaWO4 nanocomposite. J. Mater. Sci-Mater El. 31, 7260 (2020).

    Article  CAS  Google Scholar 

  35. H. Gao, S. Wang, Y. Wang, H. Yang, F. Wang, S. Tang, Z. Yi, and D. Li, CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalytic activity. Colloid. Surface. A (2022). https://doi.org/10.1016/j.colsurfa.2022.128642.

    Article  Google Scholar 

  36. H. Gao, C. Yu, Y. Wang, S. Wang, H. Yang, F. Wang, S. Tang, Z. Yi, and D. Li, A novel photoluminescence phenomenon in a SrMoO4/SrWO4 micro/nano heterojunction phosphors obtained by the polyacrylamide gel method combined with low temperature calcination technology. J. Lumin. 243, 118660 (2022).

    Article  CAS  Google Scholar 

  37. Y. Wang, H. Gao, S. Wang, L. Fang, X. Chen, C. Yu, S. Tang, H. Liu, Z. Yi, and H. Yang, Facile synthesis of BaMoO4 and BaMoO4/BaWO4 heterostructures with type-I band arrangement and enhanced photoluminescence properties. Adv. Powder Technol. 32, 4186 (2021).

    Article  CAS  Google Scholar 

  38. S. Wang, H. Gao, G. Sun, Y. Li, Y. Wang, H. Liu, and L. Yang, Structure characterization, optical and photoluminescence properties of scheelite-type CaWO4 nanophosphors: Effects of calcination temperature and carbon skeleton. Opt. Mater. 99, 109562 (2020).

    Article  CAS  Google Scholar 

  39. S.F. Wang, H.J. Gao, J.Y. Li, Y. Wang, C.L. Chen, X.L. Yu, S.N. Tang, X.X. Zhao, G.Z. Sun, and D.F. Li, Comparative study of the photoluminescence performance and photocatalytic activity of CeO2/MgAl2O4 composite materials with an n-n heterojunction prepared by one-step synthesis and two-step synthesis methods. J. Phys. Chem. Solids 150, 109891 (2021).

    Article  CAS  Google Scholar 

  40. M. Laguna, N.O. Nuñez, A.I. Becerro, and M. Ocaña, Morphology control of uniform CaMoO4 microarchitectures and development of white light emitting phosphors by Ln doping (Ln= Dy3+, Eu3+). CrystEngComm 19, 1590 (2017).

    Article  CAS  Google Scholar 

  41. J.Y. Li, S.F. Wang, G.A. Sun, H.J. Gao, X.L. Yu, S.N. Tang, X.X. Zhao, Z. Yi, Y. Wang, and Y. Wei, Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity. Mater. Today Chem. 19, 100390 (2021).

    Article  CAS  Google Scholar 

  42. S.F. Wang, X.Y. Chen, H.J. Gao, L.M. Fang, Q.W. Hu, G.A. Sun, S.N. Tang, H. Liu, C. Yu, and X.D. Pan, A comparative study on the phase structure, optical and NIR reflectivity of BaFe12O19 nano-pigments by the traditional and modified polyacrylamide gel method. J. Nano Res. 67, 1 (2021).

    Article  CAS  Google Scholar 

  43. A.A. Santiago, E.M. Macedo, F.K. Oliveira, R.L. Tranquilin, M.D. Teodoro, E. Longo, and M.R. Bomio, Enhanced photocatalytic activity of CaMoO4/g-C3N4 composites obtained via sonochemistry synthesis. Mater. Res. Bull. 146, 111621 (2022).

    Article  CAS  Google Scholar 

  44. Y. Zhai, L. Jiang, Y. Han, W. Wang, X. Chen, and H. Wu, Microwave synthesis and luminescence properties of PO43- and alkali metal ions-doped CaMoO4:Dy3+ phosphors. Optik 225, 165810 (2021).

    Article  CAS  Google Scholar 

  45. P. Dixit, V. Chauhan, P. Kumar, and P.C. Pandey, Enhanced photoluminescence in CaMoO4: Eu3+ by Mn2+ co-doping. J. Lumin. 223, 117240 (2020).

    Article  CAS  Google Scholar 

  46. S. Wang, S. Tang, H. Gao, L. Fang, Q. Hu, G. Sun, X. Chen, C. Yu, H. Liu, and X.D. Pan, Modified polyacrylamide gel synthesis of CeO2 nanoparticles by using cerium sulfate as metal source and its optical and photoluminescence properties. J. Mater. Sci-Mater. El. 32, 10820 (2021).

    Article  CAS  Google Scholar 

  47. H.F. Devi, M. Anis, and T.D. Singh, Multicolour tuning of different RE ion doped CaMoO4 nanoparticles by single wavelength excitation. J. Mater. Sci-Mater El. 31, 9514 (2020).

    Article  CAS  Google Scholar 

  48. H. Gao, Y. Wang, Q. Gao, X. Pan, S. Wang, H. Yang, C. Chen, Y. Wang, L. Fang, and Z. Yi, Phase evolution and photoluminescence behavior of MMoO4 (M= Mg, Ca, Sr) phosphors. Optik 241, 40 (2021).

    Article  CAS  Google Scholar 

  49. M. Cornac, A. Janin, and J.C. Lavalley, Application of FTIR spectroscopy to the study of sulfidation of Mo catalysts supported on alumina or silica (4000–400 cm−1 range). Infrared Phys. 24, 143 (1984).

    Article  CAS  Google Scholar 

  50. T. Hirata, In-situ observation of Mo-O Stretching vibrations during the reduction of MoO3 with hydrogen by diffuse reflectance FTIR spectroscopy. Appl. Surf. Sci. 40, 179 (1989).

    Article  CAS  Google Scholar 

  51. H.W. Lee, and Y.D. Huh, Preparation of transparent suspensions of tunable-emission CaMoO4:(1–x)Eu3+,(x)Tb3+ nanophosphors. Opt. Mater. 111, 110594 (2021).

    Article  CAS  Google Scholar 

  52. H.F. Zhai, W. Li, J. Zhang, D.D. Xing, Y.X. He, P.P. Zhang, H.R. Liu, J.E. Yang, and B. Wang, Excitation-induced tunable luminescent properties of polyhedral CaMoO4 microcrystallites. J. Mater. Sci-Mater El. 32, 10008 (2021).

    Article  CAS  Google Scholar 

  53. J. Bhagwan, S.K. Hussain, and J.S. Yu, Facile Hydrothermal synthesis and electrochemical properties of CaMoO4 nanoparticles for aqueous asymmetric supercapacitors. Acs Sustain. Chem. Eng. 7, 12340 (2019).

    CAS  Google Scholar 

  54. H. Gao, H. Yang, S. Wang, D. Li, F. Wang, L. Fang, L. Lei, H. Xiao, and G. Yang, A new route for the preparation of CoAl2O4 nanoblue pigments with high uniformity and its optical properties. J. Sol-Gel Sci. Techn. 86, 206 (2018).

    Article  CAS  Google Scholar 

  55. H. Gao, H. Yang, and S. Wang, Comparative study on optical and electrochemical properties of MFe2O4 (M= Mg, Ca, Ba) nanoparticles. T. Indian Ceram. Soc. 77, 150 (2018).

    Article  CAS  Google Scholar 

  56. H. Gao, Y. Wang, S. Wang, H. Yang, Z. Yi, Z. A simple fabrication, microstructure, optical, photoluminescence and supercapacitive performances of MgMoO4/MgWO4 heterojunction micro/nanocomposites. Solid State Sci. 129, 106909 (2022).

  57. N. Kelaidis, S. Bousiadi, M. Zervos, A. Chroneos, and N.N. Lathiotakis, Electronic properties of the Sn1−xPbxO alloy and band alignment of the SnO/PbO system: A DFT study. Sci. Rep-UK 10, 1 (2020).

    CAS  Google Scholar 

  58. V.B. Mikhailik, I.K. Bailiff, H. Kraus, P.A. Rodnyi, Two-photon excitation and luminescence of a CaWO4 scintillator. J. Ninkovic, Radiat. Meas. 38, 585 (2004).

  59. P. Suneeta, R.A. Kumar, M.V. Ramana, G.K. Kumar, A. Chatterjee, and C. Rajesh, Synthesis and optical properties of Mn-doped CaWO4 nanoparticles. Phys. Scr. 95, 035806 (2020).

    Article  CAS  Google Scholar 

  60. J. Oliva, E. Valadez-Renteria, Y.K. Kshetri, A. Encinas, S.W. Lee, and V. Rodriguez-Gonzalez, A sustainable composite of rice-paper/BaMoO4 nanoparticles for the photocatalytic elimination of the recalcitrant 2, 6-dichlorobenzamide (BAM) pesticide in drinking water and its mechanisms of degradation. Environ. Sci. Pollut. R. (2022). https://doi.org/10.1007/s11356-022-19908-2.

    Article  Google Scholar 

  61. K. Li, C. Dong, Y. Zhang, H. Wei, F. Zhao, and Q. Wang, Ag–AgBr/CaWO4 composite microsphere as an efficient photocatalyst for degradation of Acid Red 18 under visible light irradiation: Affecting factors, kinetics and mechanism. J. Mol. Catal. A-Chem. 394, 105 (2014).

    Article  CAS  Google Scholar 

  62. S.L. Liu, B. Liu, Z. Xiang, L. Xu, X.F. Wang, Y. Liu, and X. Wang, Fabrication of CaWO4 microspheres with enhanced sonocatalytic performance for ciprofloxacin removal in aqueous solution. Colloid. Surf. A 628, 127206 (2021).

    Article  CAS  Google Scholar 

  63. S. Wang, H. Gao, G. Sun, Y. Wang, L. Fang, L. Yang, L. Lei, and Y. Wei, Synthesis of visible-light-driven SrAl2O4-based photocatalysts using surface modification and ion doping. Russ. J. Phys. Chem. A 94, 1234 (2020).

    Article  Google Scholar 

  64. S. Wang, H. Gao, Y. Jin, X. Chen, F. Wang, H. Yang, L. Fang, X. Chen, S. Tang, and D. Li, Defect engineering in novel broad-band gap hexaaluminate MAl12O19 (M=Ca, Sr, Ba)-Based photocatalysts Boosts Near ultraviolet and visible light-driven photocatalytic performance. Mater. Today Chem. 24, 100942 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSAF joint Foundation of China (U2030116), the National Natural Science Foundation of China (12075215), the Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area (No. ZD2020A0401), the Talent Introduction Project (09924601) of Chongqing Three Gorges University, the Science and Technology Research Program of Chongqing Education Commission of China (KJZD-K202001202) and the Scientific Research Fund of Sichuan Provincial Science and Technology Department (2020YJ0137, 2020YFG0467).

Author information

Authors and Affiliations

Authors

Contributions

HG, YW: Experimental analysis and theoretical research, Supervision. SW, HY, LF, DL: Supervision. XC, ZY: Writing – review and editing.

Corresponding authors

Correspondence to Shifa Wang, Hua Yang or Dengfeng Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The authors claim that their study did not involve any animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Wang, S., Wang, Y. et al. Fabrication and Characterization of BaMoO4-Coupled CaWO4 Heterojunction Micro/Nanocomposites with Enhanced Photocatalytic Activity Towards MB and CIP Degradation. J. Electron. Mater. 51, 5230–5245 (2022). https://doi.org/10.1007/s11664-022-09769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09769-3

Keywords

Navigation