Skip to main content
Log in

Ab Initio Potential Energy Surfaces and Vibrational Spectra of Thioformaldehyde

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The potential energy surfaces (PESs) and vibrational spectra of thioformaldehyde (H2CS) in the high energy region have been calculated using ab initio calculations. The harmonic frequencies of H2CS were first calculated at the CCSD(T)-F12a/cc-pVTZ-F12 level and the potential was represented by a multimode expansion to obtain one-dimensional (1D) and two-dimensional (2D) PESs expanded along the normal coordinates. Anharmonic vibration frequencies of H2CS in the high energy region were calculated using the vibrational multi-reference configuration interaction (VMRCI) method which is applicable to systems with strong anharmonic resonances and high lying vibrational states (overtones or combination bands), the results obtained not only correctly reproduce the mixing of the vibrational bands between the overtones and the combination bands of H2CS due to the coupling of ν4 and ν6, but also verify the reliability of the PESs. The infrared (IR) spectra and Raman spectra of the molecular vibrations are plotted, and intensity borrowing due to resonance is observed in the IR spectra, while the stretching of the C–H bond has a relatively large effect on the Raman intensity. These data provide a reference for laboratory characterization and interstellar observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. Vastel, D. Quénard, R. Le Gal, V. Wakelam, A. Andrianasolo, P. Caselli, T. Vidal, C. Ceccarelli, B. Lefloch, and R. Bachiller, Mon. Not. R. Astron. Soc. 478, 5514 (2018).

    Article  CAS  Google Scholar 

  2. B. D. Savage and K. R. Sembach, Ann. Rev. Astron. Astrophys. 34, 279 (1996).

    Article  CAS  Google Scholar 

  3. T. Lamberts, Astron. Astrophys. 615, L2 (2018).

    Article  Google Scholar 

  4. Y. Oya, A. López-Sepulcre, N. Sakai, Y. Watanabe, A. E. Higuchi, T. Hirota, Y. Aikawa, T. Sakai, C. Ceccarelli, B. Lefloch, E. Caux, C. Vastel, C. Kahane, and S. Yamamoto, Astrophys. J. 881, 112 (2019).

    Article  CAS  Google Scholar 

  5. G. Luo, S. Feng, D. Li, S.-L. Qin, Y. Peng, N. Tang, Z. Ren, and H. Shi, Astrophys. J. 885, 82 (2019).

    Article  CAS  Google Scholar 

  6. D. R. Johnson and F. X. Powell, Science (Washington, DC, U. S.) 169, 679 (1970).

    Article  CAS  Google Scholar 

  7. N. Evans, C. Townes, H. Weaver, and D. Williams, Science (Washington, DC, U. S.) 169, 680 (1970).

    Article  CAS  Google Scholar 

  8. M. Sinclair, N. Fourikis, J. Ribes, B. Robinson, R. Brown, and P. Godfrey, Aust. J. Phys. 26, 85 (1973).

    Article  CAS  Google Scholar 

  9. L. Woodney, M. A’hearn, J. McMullin, and N. Samarasinha, Earth Moon Planets 78, 69 (1997).

    Article  Google Scholar 

  10. P. Schilke, T. Groesbeck, G. Blake, and T. Phillips, Astrophys. J., Suppl. Ser. 108, 301 (1996).

  11. P. Schilke, D. Benford, T. Hunter, D. Lis, and T. Phillips, Astrophys. J. Suppl. Ser. 132, 281 (2001).

    Article  CAS  Google Scholar 

  12. C. Comito, P. Schilke, T. Phillips, D. Lis, F. Motte, and D. Mehringer, Astrophys. J. Suppl. Ser. 156, 127 (2005).

    Article  CAS  Google Scholar 

  13. D. R. Johnson, F. X. Powell, and W. H. Kirchhoff, J. Mol. Spectrosc. 39, 136 (1971).

    Article  CAS  Google Scholar 

  14. J. Johns and W. B. Olson, J. Mol. Spectrosc. 39, 479 (1971).

    Article  CAS  Google Scholar 

  15. M. E. Jacox and D. E. Milligan, J. Mol. Spectrosc. 58, 142 (1975).

    Article  CAS  Google Scholar 

  16. M. E. Jacox, J. Phys. Chem. Ref. Data 32, 1 (2003).

    Article  CAS  Google Scholar 

  17. M. Jacox, NIST Spec. Publ. SP, 28 (1998).

  18. R. Judge, D. Moule, and G. King, J. Mol. Spectrosc. 81, 37 (1980).

    Article  CAS  Google Scholar 

  19. A. P. Cox, S. D. Hubbard, and H. Kato, J. Mol. Spectrosc. 93, 196 (1982).

    Article  CAS  Google Scholar 

  20. J. R. Dunlop, J. Karolczak, D. J. Clouthier, and S. C. Ross, J. Phys. Chem. 95, 3045 (1991).

    Article  CAS  Google Scholar 

  21. D. Clouthier and D. Ramsay, Ann. Rev. Phys. Chem. 34, 31 (1983).

    Article  CAS  Google Scholar 

  22. J.-M. Flaud, W. J. Lafferty, A. Perrin, Y. Kim, H. Beckers, and H. Willner, J. Quant. Spectrosc. Radiat. Transf. 109, 995 (2008).

    Article  CAS  Google Scholar 

  23. H. S. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, J. Mol. Struct. 742, 215 (2005).

    Article  Google Scholar 

  24. H. S. Müller, S. Thorwirth, D. Roth, and G. Winnewisser, Astron. Astrophys. 370, L49 (2001).

    Article  Google Scholar 

  25. S.-Y. Chiang and I.-F. Lin, J. Chem. Phys. 122, 094301 (2005).

  26. K. Kasatani, M. Kawasaki, and H. Sato, Chem. Lett. 30, 62 (2001).

    Article  Google Scholar 

  27. M. Kawasaki, K. Kasatani, and H. Sato, Chem. Phys. 94, 179 (1985).

    Article  CAS  Google Scholar 

  28. T. Suzuki, S. Saito, and E. Hirota, J. Mol. Spectrosc. 111, 54 (1985).

    Article  CAS  Google Scholar 

  29. H. S. P. Müller, A. Maeda, S. Thorwirth, F. Lewen, S. Schlemmer, I. R. Medvedev, M. Winnewisser, F. C. de Lucia, and E. Herbst, Astron. Astrophys. 621, A143 (2019).

    Article  Google Scholar 

  30. A. Maeda, I. R. Medvedev, M. Winnewisser, F. C. de Lucia, E. Herbst, H. S. Müller, M. Koerber, C. P. Endres, and S. Schlemmer, Astrophys. J. Suppl. Ser. 176, 543 (2008).

    Article  CAS  Google Scholar 

  31. J. M. Martin, J.-P. Francois, and R. Gijbels, J. Mol. Spectrosc. 168, 363 (1994).

    Article  CAS  Google Scholar 

  32. S. Carter and N. C. Handy, J. Mol. Spectrosc. 192, 263 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. S. Carter, A. R. Sharma, J. M. Bowman, P. Rosmus, and R. Tarroni, J. Chem. Phys. 131, 224106 (2009).

  34. A. Yachmenev, S. N. Yurchenko, T. Ribeyre, and W. Thiel, J. Chem. Phys. 135, 074302 (2011).

  35. A. Yachmenev, I. Polyak, and W. Thiel, J. Chem. Phys. 139, 204308 (2013).

  36. Y.-Z. Tang, Y.-R. Pan, B. He, J.-Y. Sun, X.-J. Jia, H. Sun, and R.-S. Wang, Theor. Chem. Acc. 122, 67 (2009).

    Article  CAS  Google Scholar 

  37. N. Inostroza-Pino, C. Z. Palmer, T. J. Lee, and R. C. Fortenberry, J. Mol. Spectrosc. 369, 111273 (2020).

  38. S. Erfort, M. Tschöpe, and G. Rauhut, J. Chem. Phys. 152, 244104 (2020).

  39. K. V. Murphy, W. J. Morgan, Z. Sun, H. F. Schaefer III, and J. Agarwal, J. Phys. Chem. A 121, 998 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. H.-D. Meyer, F. le Quéré, C. Léonard, and F. Gatti, Chem. Phys. 329, 179 (2006).

    Article  CAS  Google Scholar 

  41. E. van Dornshuld, C. M. Holy, and G. S. Tschumper, J. Phys. Chem. A 118, 3376 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. C. Léonard, G. Chambaud, P. Rosmus, S. Carter, and N. C. Handy, Phys. Chem. Chem. Phys. 3, 508 (2001).

    Article  Google Scholar 

  43. K. B. Bec, J. Grabska, and C. W. Huck, Spectrochim. Acta, Part A 254, 119625 (2021).

  44. Y. Ozaki, K. B. Bec, Y. Morisawa, S. Yamamoto, I. Tanabe, C. W. Huck, and T. S. Hofer, Chem. Soc. Rev. 50, 10917 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. K. B. Bec and C. W. Huck, Front. Chem. 7, 48 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. H. J. Werner, G. Knizia, and F. R. Manby, Mol. Phys. 109, 407 (2011).

    Article  CAS  Google Scholar 

  47. G. Rauhut, G. Knizia, and H. J. Werner, J. Chem. Phys. 130, 054105 (2009).

  48. T. B. Adler, G. Knizia, and H. J. Werner, J. Chem. Phys. 127, 221106 (2007).

  49. J. Light, I. Hamilton, and J. Lill, J. Chem. Phys. 82, 1400 (1985).

    Article  CAS  Google Scholar 

  50. M. Chan, S. Manzhos, T. Carrington, Jr., and K. Yamashita, J. Chem. Theory Comput. 8, 2053 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. R. Gerber and M. A. Ratner, in Advances in Chemical Physics, Vol. 70: Evolution of Size Effects in Chemical Dynamics, Ed. by I. Prigogine (Wiley-Interscience, New York, 1988), p. 97.

  52. G. M. Chaban, J. O. Jung, and R. B. Gerber, J. Chem. Phys. 111, 1823 (1999).

    Article  CAS  Google Scholar 

  53. J. M. Bowman, Acc. Chem. Res. 19, 202 (1986).

    Article  CAS  Google Scholar 

  54. J. M. Bowman, J. Chem. Phys. 68, 608 (1978).

    Article  CAS  Google Scholar 

  55. O. Christiansen, J. Chem. Phys. 120, 2149 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. G. Rauhut, J. Chem. Phys. 127, 184109 (2007).

  57. P. Seidler, M. Sparta, and O. Christiansen, J. Chem. Phys. 134, 054119 (2011).

  58. B. Thomsen, M. B. Hansen, P. Seidler, and O. Christiansen, J. Chem. Phys. 136, 124101 (2012).

  59. F. Culot and J. Liévin, Theor. Chim. Acta 89, 227 (1994).

    Article  CAS  Google Scholar 

  60. F. Culot, F. Laruelle, and J. Liévin, Theor. Chim. Acta 92, 211 (1995).

    CAS  Google Scholar 

  61. U. Manthe, H. D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).

    Article  CAS  Google Scholar 

  62. F. Pfeiffer and G. Rauhut, J. Chem. Phys. 140, 064110 (2014).

  63. J. K. Watson, Mol. Phys. 15, 479 (1968).

    Article  CAS  Google Scholar 

  64. G. Rauhu, J. Chem. Phys. 12, 9313 (2004).

    Article  Google Scholar 

  65. S. Carter, J. M. Bowman, and L. B. Harding, Spectrochim. Acta, Part A 53, 1179 (1997).

    Article  Google Scholar 

  66. S. Carter, S. J. Culik, and J. M. Bowman, J. Chem. Phys. 107, 10458 (1997).

    Article  CAS  Google Scholar 

  67. K. Pflüger, M. Paulus, S. Jagiella, T. Burkert, and G. Rauhut, Theor. Chem. Acc. 114, 327 (2005).

    Article  Google Scholar 

  68. M. Keceli, T. Shiozaki, K. Yagi, and S. Hirata, Mol. Phys. 107, 1283 (2009).

    Article  CAS  Google Scholar 

  69. S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007).

    Article  CAS  Google Scholar 

  70. S. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, and J. Tennyson, J. Phys. Chem. A 113, 11845 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. K. B. Beć, NIR News 32, 15 (2021).

    Article  Google Scholar 

  72. P. Linstorm, J. Phys. Chem. Ref. Data, Monograph 9, 1 (1998).

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, (grant no. 22103061) and the Natural Science Foundation of Shaanxi Province (grant no. 2022JQ-569).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangang Xu or Yunguang Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Xu, J., Li, L. et al. Ab Initio Potential Energy Surfaces and Vibrational Spectra of Thioformaldehyde. Russ. J. Phys. Chem. 97, 1953–1963 (2023). https://doi.org/10.1134/S0036024423090248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090248

Keywords:

Navigation