Skip to main content
Log in

Thermophysical Studies on Binary Liquid Mixtures of Benzyl Alcohol and Alkylamines at 298.15–308.15 K

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In the present study, the new experimental values of thermophysical properties namely density (ρ) and viscosity (η) for binary liquid mixtures of benzyl alcohol (BA) with n-butylamine (n-BA), sec-butylamine (s-BA) and tert-butylamine (t-BA) have been measured over the whole range of mole fraction of benzyl alcohol at atmospheric pressure and at 298.15, 303.15, and 308.15 K temperatures. Using the thermophysical data, excess molar volume (\(V_{m}^{E}\)), viscosity deviation (∆η), and also apparent molar volumes (\({{V}_{{m,\varnothing ,1}}}~\) and \({{V}_{{m,\varnothing ,2}}}\)) were calculated. Further, the Redlich–Kister (R–K) equation was used to correlate \(V_{m}^{E}\) and ∆η properties at all worked temperatures. Based on obtained results intermolecular interactions (H-bond and \({{\pi }}{-} {\text{HN}}\)) were determined. The \(V_{m}^{E}\) values were found to be negative deviations and ∆η values were found to be positive deviations over the full range of mole fraction of benzyl alcohol for all systems. Furthermore, the effect of temperature on ρ, η, \(V_{m}^{E}\), and ∆η was also informed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. G. Douhéret and M. I. Davis, Chem. Soc. Rev. 22, 43 (1993).

    Article  Google Scholar 

  2. M. J. Blandamer, M. I. Davis, G. Douheret, and J. C. Reis, Chem. Soc. Rev. 30, 8 (2001).

    Article  CAS  Google Scholar 

  3. P. Venkatesu, Fluid Phase Equilib. 298, 173 (2010).

    Article  CAS  Google Scholar 

  4. B. Satheesh, D. Sreenu, M. Chandrasekhar, and T. S. Jyostna, J. Mol. Liq. 317, 113942 (2020).

  5. S. L. Oswal and M. M. Maisuria, J. Mol. Liq. 100, 91 (2002).

    Article  CAS  Google Scholar 

  6. S. L. Oswal and M. M. Maisuria, J. Mol. Liq. 100, 91 (2002).

    Article  CAS  Google Scholar 

  7. G. Nath, S. Sahu, and R. Paikaray, Ind. J. Phys. 83, 429 (2009).

    Article  CAS  Google Scholar 

  8. G. Conti, P. Gianni, L. Lepori, and E. Matteoli, J. Pure Appl. Chem. 67, 1849 (1995).

    Article  CAS  Google Scholar 

  9. S. Singh, B. P. Sethi, R. C. Katyal, and V. K. Rattan, J. Chem. Eng. Data 49, 1373 (2004).

    Article  CAS  Google Scholar 

  10. B. González, N. Calvar, E. Gómez, and A. Domínguez, J. Chem. Thermodyn. 39, 1578 (2007).

    Article  Google Scholar 

  11. S. C. Bhatia, J. Sangwan, and R. Bhatia, J. Mol. Liq. 161, 95 (2001).

    Article  Google Scholar 

  12. I. C. Hwang, K. L. Kim, and S. J. Park, J. Chem. Eng. Data 52, 1919 (2007).

    Article  CAS  Google Scholar 

  13. X. P. Wang, F. X. Yang, and Y. Gao, J. Chem. Thermodyn. 57, 145 (2013).

    Article  CAS  Google Scholar 

  14. R. S. Neyband, A. Yousefi, and H. Zarei, J. Chem. Eng. Data 60, 2291 (2015).

    Article  CAS  Google Scholar 

  15. The Merck Index, 13th ed. (Merck & Co., Whitehouse Station, NJ, 2001).

  16. K. B. Ranjith, P. M. Krishna, S. A. Banu, K. A. Jyothi, T. S. Savitha, and N. Satyanarayana, Phys. Chem. Liq. 48, 79 (2010).

    Article  Google Scholar 

  17. Ullmann's Encyclopedia of Industrial Chemistry, 5th ed. (VCH, Weinheim, 1985), Vol. A2, p. 9.

  18. G. S. Reddy, A. S. Reddy, M. V. Subbaiah, and A. Krishnaiah, J. Sol. Chem. 39, 399 (2010).

    Article  CAS  Google Scholar 

  19. W. L. Weng and J. T. Chen, J.Chem. Eng. Data 49, 1748 (2004).

    Article  CAS  Google Scholar 

  20. T. S. Jyostna, B. Satheesh, D. Sreenu, G. Ramesh, and R. E. Jayanthi, Phys. Chem. Liq. 58, 349 (2020).

    Article  Google Scholar 

  21. S. Sharma and M. Makavana, Fluid Phase Equilib. 375, 219 (2014).

    Article  CAS  Google Scholar 

  22. M. Moosavi and A. A. Rostami, J. Chem. Eng. Data 62, 156 (2017).

    Article  CAS  Google Scholar 

  23. S. Azizian and N. Bashavard, J. Chem. Eng. Data 50, 1303 (2005).

    Article  CAS  Google Scholar 

  24. S. N. Pandharinath and S. J. Kharat, J. Chem. Eng. Data 48, 1291 (2003).

    Article  Google Scholar 

  25. A. Pal, R. Gaba, and S. Sharma, J. Chem. Eng. Data 53, 1643 (2008).

    Article  CAS  Google Scholar 

  26. C. M. Kinart, W. J. Kinart, D. Chęcińska-Majak, and A. Ćwiklińska, J. Mol. Liq. 109, 19 (2004).

    Article  CAS  Google Scholar 

  27. S. L. Oswal, P. Oswal, and R. L. Gardas, Fluid Phase Equilib. 216, 33 (2004).

    Article  CAS  Google Scholar 

  28. F. L. Chowdhury and M. A. Saleh, J. Mol. Liq. 191, 156 (2014).

    Article  CAS  Google Scholar 

  29. C. S. M. Subha, S. G. Narayana, and B. M. Eshwari, Ind. J. Chem. 43A, 1876 (2000).

    Google Scholar 

  30. M. A. Saleh, S. Akhtar, and A. R. Khan, Phys. Chem. Liq. 39, 85 (2001).

    Article  CAS  Google Scholar 

  31. C. Hao, Z. Zhao, X. Yue, Y. Pang, and J. Zhang, J. Mol. Liq. 274, 730 (2019).

    Article  CAS  Google Scholar 

  32. H. Shi, L. Ma, B. Zhao, Y. Pang, and Z. Wu, J. Mol. Liq. 250, 182 (2018).

    Article  CAS  Google Scholar 

  33. M. Raveendra, M. Chandrasekhar, C. Narasimharao, C. Venkatramanna, K. S. Kumar, and K. D. Reddy, RSC Adv. 6, 27335 (2016).

    Article  CAS  Google Scholar 

  34. T. H. Nam, J. Phys. Chem. 98, 5362 (1994).

    Article  Google Scholar 

  35. G. Larsen, Z. K. Ismail, B. Herreros, and R. D. Parra, J. Phys. Chem. A 102, 4734 (1998).

    Article  CAS  Google Scholar 

  36. I. Bahadur and N. Deenadayalu, J. Sol. Chem. 40, 1528 (2011).

    Article  CAS  Google Scholar 

  37. M. V. Rathnam, R. T. Sayed, K. R. Bhanushali, and M. S. S. Kumar, J. Mol. Liq. 166, 9 (2012).

    Article  CAS  Google Scholar 

  38. K. Rajagopal and S. Chenthinath, J. Mol. Liq. 155, 20 (2010).

    Article  CAS  Google Scholar 

  39. S. Parveen, S. Singh, D. Shukla, M. Yasmin, M. Gupta, and J. P. Shukla, J. Sol. Chem. 41, 156 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author Sumalatha Donthula thankful to Chaitanya Deemed to be University, Hanamkonda for the constant support and encouragement during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amireddy Raju.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donthula, S., Raju, A. Thermophysical Studies on Binary Liquid Mixtures of Benzyl Alcohol and Alkylamines at 298.15–308.15 K. Russ. J. Phys. Chem. 97, 1849–1859 (2023). https://doi.org/10.1134/S0036024423090236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090236

Keywords:

Navigation