Skip to main content
Log in

Zeaxanthin but not Lutein or Beta Carotene Destabilizes with the Presence of Higher Level of Cholesterol in the Liposomal Model Membrane: Absorption and Fluorescence Studies

  • BIOPHYSICAL CHEMISTRY AND PHYSICAL AND CHEMICAL BIOLOGY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

To facilitate better knowledge of the physiological behavior of some dietary carotenoids in native membranes in the presence of cholesterol, the effects of incorporated 1.5 mol % β-carotene (BC), lutein (LUT), zeaxanthin (ZEA), and colorant in diet canthaxanthin (CTX) on Egg Yolk phosphatidylcholine (EYPC) model liposomes which contain cholesterol at different concentrations (50 and 75 mol %) were investigated. We applied UV–Vis spectroscopy, laurdan fluorescence quenching efficiencies, and membrane rigidity as estimated by a generalized polarization parameter derived from laurdan emission spectra. The incorporation yield percentage (IY%) of polar carotenoids LUT and ZEA into lipid membranes was reduced when cholesterol was present at higher levels in the phospholipid bilayer. The decline in incorporation was the strongest for ZEA. The non-polar carotenoid BC was incorporated with the lowest IY% in the presence of different concentrations of cholesterol. LUT and CTX revealed higher quenching efficiencies, showing that they interact stronger with Laurdan in the membrane than ZEA did in the presence of lower and higher amounts of cholesterol. A rigidifying effect was observed for ZEA in membranes prepared with lower levels of cholesterol which was not observed in membranes prepared with higher levels of cholesterol. This weaker adaptation of ZEA with cholesterol could be explained by the high competition between them to reside in the membranes, whereas LUT is more adaptable within the liposomes. The above data indicate that ZEA is excluded from the cholesterol-rich membrane domains, which is consistent with its poor solubility in membranes with a high cholesterol content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. Britton, FASEB J. 9, 1551 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. W. I. Gruszecki and K. Strzalka, Biochim. Biophys. Acta 1740, 108 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. N. I. Krinsky, J. T. Landrum, and R. A. Bone, Ann. Rev. Nutr. 23, 171 (2003).

    Article  CAS  Google Scholar 

  4. H. P. McNulty, J. Byun, S. F. Lockwood, R. F. Jacob, and R. P. Mason, Biochim. Biophys. Acta 1768, 167 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. A. Sujak, J. Gabrielska, W. Grudzecki, R. Borc, P. Mazurek, and W. I. Gruszecki, Arch. Biochem. Biophys. 371, 301 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. A. A. Woodall, G. Britton, and M. J. Jackson, Biochim. Biophys. Acta 1336, 575 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, Invest. Ophthalmol. Vis. Sci. 29, 843 (1988).

    CAS  PubMed  Google Scholar 

  8. G. H. Handelman, E. A. Drarz, C. C. Reay, and F. J. G. M. van Kuijk, Invest. Ophthalmol. Vis. Sci. 29, 850 (1988).

    CAS  PubMed  Google Scholar 

  9. D. M. Snodderly, Am. J. Clin. Nutr. 62, 1448 (1995).

    Article  Google Scholar 

  10. A. E. Ibrahim, M. W. Shafaa, M. H. Khedr, and R. F. Rashed, Cutan. Ocul. Toxicol. 38, 279 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. P. Grolier, V. Zais-Braesco, L. Zelmire, and H. Fessi, Biochim. Biophys. Acta 1111, 135 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. A. D. Bangham, M. W. Hill, and N. G. A. Miller, in Methods in Membrane Biology, Ed. by E. D. Karn (Plenum, New York, 1974), Vol. 1, p. 1.

    Google Scholar 

  13. D. W. Deamer and P. S. Uster, in Liposomes, Ed. by M. J. Ostro (Dekker, New York, 1983), p. 27.

    Google Scholar 

  14. M. W. Shafaa, H. A. Diehl, and C. Socaciu, Biophys. Chem. 129, 111 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. G. Britton, S. Liaan-Jensen, and H. Pfander, in Carotenoids, Ed. by G. Britton, S. Liaan-Jensen, and H. Pfander (Birkhauser, Berlin, 1995), Vol. 1B, p. 13.

  16. D. B. Rodriguez-Amaya, A Guide to Carotenoid Analysis in Foods (ILSI press, Washington, 2001), Vol. 71.

    Google Scholar 

  17. C. Socaciu, R. Jessel, and H. A. Diehl, Chem. Phys. Lipids 106, 79 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. I. Jialal, E. P. Norkus, L. Cristol, and S. M. Grundy, Biochim. Biophys. Acta 1086, 134 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. I. Lacrajan, H. A. Diehl, C. Socaciu, M. Engelke, and M. Zorn-Kruppa, Chem. Phys. Lipids 112, 1 (2001).

    Article  Google Scholar 

  20. A. Sujak, J. Gabrielska, J. Milanowska, P. Mazurek, K. Strzalka, and W. I. Gruszecki, Biochim. Biophys. Acta 1712, 17 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. B. Yang, S. Y. Geng, X. M. Liu, J. T. Wang, Y. K. Chen, Y. L. Wang, and J. Y. Wang, Soft Matter 8, 518 (2012).

    Article  CAS  Google Scholar 

  22. J. Gabrielska and W. I. Gruszecki, Biochim. Biophys. Acta, Biomembr. 1285, 167 (1996).

    Article  CAS  Google Scholar 

  23. J. Sielewiesiuk, M. Matula, and W. I. Gruszecki, Cell Mol. Biol. Lett. 2, 59 (1997).

    CAS  Google Scholar 

  24. T. Parasassi, G. de Stasio, G. Ravagnan, R. M. Rusch, and E. Gratton, Biophys. J. 60, 179 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Matsuoka and M. Murata, Biochim. Biophys. Acta, Biomembr. 1564, 429 (2002).

    Article  CAS  Google Scholar 

  26. R. Goralczyk, F. M. Barker, S. Buser, H. Liechti, and J. Bausch, Invest. Ophthalmol. Vis. Sci. 41, 1513 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat W. Shafaa.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafaa, M.W. Zeaxanthin but not Lutein or Beta Carotene Destabilizes with the Presence of Higher Level of Cholesterol in the Liposomal Model Membrane: Absorption and Fluorescence Studies. Russ. J. Phys. Chem. 97, 2070–2077 (2023). https://doi.org/10.1134/S0036024423090121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090121

Keywords:

Navigation