Skip to main content
Log in

Mechanism for the Formation of Nanoscale Oxides in a Medium of Supercritical CO2 Fluid

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A possible mechanism is considered for the formation of nanoscale oxides based on titanium and aluminum isopropoxides in a medium of supercritical CO2 fluid. It is shown that because of intermolecular interactions and high pressure in the system, the supercritical fluid acquires the properties of a condensed medium, the main role of which is to restrain processes of hydrolysis. At the first stage of the hydrolysis of titanium isopropoxide, the water molecule is coordinated in the outer sphere of the central atom due to the formation of intermolecular hydrogen bonds. It is then coordinated into the inner sphere with the formation of a five-coordinate transition state and its destruction, creating a product substituted for the hydroxo group. The next steps proceed in a similar way. The described mechanism agrees with experimental findings and produces nanosized X-ray amorphous titanium oxide. (With aluminum isopropoxide, only the hydrolyzed hydroxo form can be produced.) Results suggest the production of nanosized oxides from isopropoxides in a medium of supercritical CO2 fluid is possible for transitional d-elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. M. Vorobei, O. I. Pokrovskii, K. B. Ustinovich, et al., Sverkhkrit. Flyuidy: Teor. Prakt. 10 (2), 51 (2015).

    Google Scholar 

  2. E. Lemasson, S. Bertin, and C. West, J. Sep. Sci. 39, 212 (2016). https://doi.org/10.1002/jssc.201501062

    Article  CAS  PubMed  Google Scholar 

  3. P. B. Gomes, V. G. Mata, and A. E. Rodrigues, J. Supercrit. Fluids 41, 50 (2007). https://doi.org/10.1016/j.supflu.2006.08.018

    Article  CAS  Google Scholar 

  4. J. W. King, Ann. Rev. Food Sci. Technol. 5, 215 (2014). https://doi.org/10.1146/annurev-food-030713-092447

    Article  CAS  Google Scholar 

  5. A. Kaleva, S. Heinonen, J. P. Nikkanen, and E. Levänen, IOP Conf. Ser.: Mater. Sci. Eng. 175, 120 (2017). https://doi.org/10.1088/1757-899X/175/1/012034

  6. E. P. da Silva, M. R. Guilherme, E. T. Tenório-Neto, et al., Mater. Lett. 136, 133 (2015). https://doi.org/10.1016/j.matlet.2014.07.156

    Article  CAS  Google Scholar 

  7. C. Zhu, Y. Zhou, S. Fu, et al., ECS Trans. 69, 631 (2015). https://doi.org/10.1149/06917.0631ecst

    Article  CAS  Google Scholar 

  8. D. S. Kim, Y. H. Shin, and Y. W. Lee, Chem. Eng. Commun. 202, 78 (2015). https://doi.org/10.1080/00986445.2013.825611

    Article  CAS  Google Scholar 

  9. A. D. C. Permana, A. Nugroho, K. Y. Chung, et al., Chem. Eng. J. 241, 216 (2014). https://doi.org/10.1016/j.cej.2013.12.029

    Article  CAS  Google Scholar 

  10. G. M. Kuz’micheva, Tonk. Khim. Tekhnol. 10 (6), 5 (2015).

    Google Scholar 

  11. E. S. Alekseev, A. Y. Alentiev, A. S. Belova, et al., Russ. Chem. Rev. 89, 1337 (2020). https://doi.org/10.1070/RCR4932?locatt=label:RUSSIAN

    Article  CAS  Google Scholar 

  12. I. A. Konovalov, B. N. Mavrin, N. A. Prokudina, et al., Russ. Chem. Bull. 65, 2795 (2016).

    Article  CAS  Google Scholar 

  13. K. A. Smirnova, V. V. Fomichev, D. V. Drobot, et al., Tonk. Khim. Tekhnol. 10 (1), 76 (2015).

    CAS  Google Scholar 

  14. I. E. Sokolov, I. A. Konovalov, R. M. Zakalyukin, et al., MRS Commun. 8, 59 (2018). https://doi.org/10.1557/mrc.2018.3

    Article  CAS  Google Scholar 

  15. G. Oskam, A. Nellore, R. L. Penn, et al., J. Phys. Chem. B 107, 1734 (2003). https://doi.org/10.1021/jp021237f

    Article  CAS  Google Scholar 

  16. Park Jin-Koo, Myoung Jung-Jae, Kyong Jin-Burm, et al., Bull. Korean Chem. Soc. 24, 671 (2003). https://doi.org/10.5012/bkcs.2003.24.5.671

    Article  Google Scholar 

  17. Y. Zhang, J. Yang, and Y.-X. Yu, J. Phys. Chem. B 109, 133575 (2005). https://doi.org/10.1021/jp045741r

  18. A. R. Teymourtash, D. R. Khonakdar, and M. R. Raveshi, J. Supercrit. Fluids 74, 115 (2013). https://doi.org/10.1016/j.supflu.2012.12.010

    Article  CAS  Google Scholar 

  19. A. E. Lebedev, A. M. Katalevich, and N. V. Menshutina, J. Supercrit. Fluids 106, 122 (2015). https://doi.org/10.1016/j.supflu.2015.06.010

    Article  CAS  Google Scholar 

  20. D. Borjan, M. Gracnar, Z. Knez, et al., Processes 10, 2275 (2022). https://doi.org/10.3390/pr10112275

    Article  CAS  Google Scholar 

  21. R. A. Pierotti, Chem. Rev. 76, 717 (1976). https://doi.org/10.1021/cr60304a002

    Article  CAS  Google Scholar 

  22. J. Emsley, The Elements, 3rd ed. (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  23. G. M. J. Barca, C. Bertoni, L. Carrington, et al., J. Chem. Phys. 152, 154102 (2020). https://doi.org/10.1063/5.0005188

  24. C. Adamo, J. Chem. Phys. 110, 6158 (1999). https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-29-06013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Fomichev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, D.V., Sigov, A.S., Kolobanov, A.I. et al. Mechanism for the Formation of Nanoscale Oxides in a Medium of Supercritical CO2 Fluid. Russ. J. Phys. Chem. 97, 1515–1521 (2023). https://doi.org/10.1134/S0036024423070117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423070117

Keywords:

Navigation