Skip to main content
Log in

Effect of the Granulometric Composition of Natural Graphite and the Means of Synthesis on the Pore Structure of Thermally Expanded Graphite

  • PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A 2D-NLDFT-HS study is performed of the effect the state of oxidation of the graphite matrix has on the parameters of micro-, meso-, and macropore structures of thermally expanded graphite (TEG). A wide range of the stage numbers of graphite intercalation compounds synthesized from natural flake graphite of the same grade is considered, along with the intercalant that is used and the particle size of the original graphite. The 2D-NLDFT-HS model provides a more accurate description of low-temperature nitrogen adsorption/desorption isotherms than other means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. D. D. L. Chung, J. Mater. Sci. 51, 554 (2016). https://doi.org/10.1007/s10853-015-9284-6

    Article  CAS  Google Scholar 

  2. S. K. Nayak, S. Mohanty, and S. K. Nayak, High Perform. Polym. 32, 506 (2019). https://doi.org/10.1177/0954008319884616

    Article  CAS  Google Scholar 

  3. N. E. Sorokina, A. V. Redchitz, S. G. Ionov, et al., J. Phys. Chem. Solids 67, 1202 (2006). https://doi.org/10.1016/j.jpcs.2006.01.048

    Article  CAS  Google Scholar 

  4. M. Inagaki, F. Kang, M. Toyoda, et al., in Advanced Materials Science and Engineering of Carbon (Butterworth-Heinemann, London, 2014), p. 313. https://doi.org/10.1016/B978-0-12-407789-8.00014-4

    Book  Google Scholar 

  5. Z. Wang, E. Han, and W. Ke, Corros. Sci. 49, 2237 (2007). https://doi.org/10.1016/j.corsci.2006.10.024

    Article  CAS  Google Scholar 

  6. A. V. Ivanov, N. V. Maksimova, A. O. Kamaev, et al., Mater. Lett. 228, 403 (2018). https://doi.org/10.1016/j.matlet.2018.06.072

    Article  CAS  Google Scholar 

  7. I. M. Afanasov, O. N. Shornikova, D. A. Kirilenko, et al., Carbon 48, 1862 (2010). https://doi.org/10.1016/j.carbon.2010.01.055

    Article  CAS  Google Scholar 

  8. N. E. Sorokina, N. V. Maksimova, and V. V. Avdeev, Inorg. Mater. 37, 360 (2001). https://doi.org/10.1023/A:1017575710886

    Article  CAS  Google Scholar 

  9. M. Salvatore, G. Carotenuto, S. de Nicola, et al., Nanoscale Res. Lett. 12, 167 (2017). https://doi.org/10.1186/s11671-017-1930-2

    Article  CAS  Google Scholar 

  10. N. E. Sorokina, N. V. Maksimova, and V. V. Avdeev, Inorg. Mater. 38, 564 (2002). https://doi.org/10.1023/A:1015857317487

    Article  CAS  Google Scholar 

  11. W. C. Forsman, F. L. Vogel, D. E. Carl, et al., Carbon 16, 269 (1978). https://doi.org/10.1016/0008-6223(78)90040-4

    Article  CAS  Google Scholar 

  12. B. Gurzęda, T. Buchwald, and P. Krawczyk, J. Solid State Electrochem. 24, 1363 (2020). https://doi.org/10.1007/s10008-020-04642-x

    Article  CAS  Google Scholar 

  13. A. V. Dunaev, I. V. Arkhangelsky, Y. V. Zubavichus, et al., Carbon 46, 788 (2008). https://doi.org/10.1016/j.carbon.2008.02.003

    Article  CAS  Google Scholar 

  14. V. S. Leshin, N. E. Sorokina, and V. V. Avdeev, Inorg. Mater. 40, 649 (2004). https://doi.org/10.1023/B:INMA.0000032001.86743.00

    Article  CAS  Google Scholar 

  15. N. E. Sorokina, L. A. Monyakina, N. V. Maksimova, et al., Inorg. Mater. 38, 482 (2002). https://doi.org/10.1023/A:1015423105964

    Article  CAS  Google Scholar 

  16. A. V. Ivanov, M. S. Manylov, N. V. Maksimova, et al., J. Mater. Sci. 54, 4457 (2019). https://doi.org/10.1007/s10853-018-3151-1

    Article  CAS  Google Scholar 

  17. E. A. Efimova, D. A. Syrtsova, V. V. Teplyakov, Sep. Purif. Technol. 179, 467 (2017). https://doi.org/10.1016/j.seppur.2017.02.023

    Article  CAS  Google Scholar 

  18. J. Bodzenta, J. Mazur, and A. Kaźmierczak-Bałata, Appl. Phys. B 105, 623 (2011). https://doi.org/10.1007/s00340-011-4510-7

    Article  CAS  Google Scholar 

  19. I. M. Afanasov, I. V. Makarenko, I. I. Vlasov, et al., in Compact. Expand. Graph. with a Low Thermal Conduction (Curran Assoc., Clemson, South Carolina, USA, 2010), p. 645.

    Google Scholar 

  20. M. Inagaki, N. Saji, Y.-P. Zheng, et al., TANSO 2004, 258 (2004). https://doi.org/10.7209/tanso.2004.258

    Article  Google Scholar 

  21. M. Inagaki, R. Tashiro, M. Toyoda, et al., Ceram. Soc. Jpn. 112, S1513 (2004). https://doi.org/10.14852/jcersjsuppl.112.0.S1513.0

    Article  Google Scholar 

  22. M. Inagaki, R. Tashiro, Y. Washino, et al., J. Phys. Chem. Solids 65, 133 (2004). https://doi.org/10.1016/j.jpcs.2003.10.007

    Article  CAS  Google Scholar 

  23. F. Kang, Y.-P. Zheng, H.-N. Wang, et al., Carbon 40, 1575 (2002). https://doi.org/10.1016/S0008-6223(02)00023-4

    Article  CAS  Google Scholar 

  24. M. Inagaki and T. Suwa, Carbon 39, 915 (2001). https://doi.org/10.1016/S0008-6223(00)00199-8

    Article  CAS  Google Scholar 

  25. R. Goudarzi and G. Hashemi Motlagh, Heliyon 5, e02595 (2019). https://doi.org/10.1016/j.heliyon.2019.e02595

  26. K. Guerin, A. Fevrier-Bouvier, S. Flandrois, et al., J. Electrochem. Soc. 146, 3660 (1999). https://doi.org/10.1149/1.1392530

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of project no. АААА-А16-116053110012-5 and the development program of the interfaculty scientific and educational school “The Future of the Planet and Global Environmental Changes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kravtsov.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravtsov, A.V., Shornikova, O.N., Bulygina, A.I. et al. Effect of the Granulometric Composition of Natural Graphite and the Means of Synthesis on the Pore Structure of Thermally Expanded Graphite. Russ. J. Phys. Chem. 96, 2729–2736 (2022). https://doi.org/10.1134/S0036024422120172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422120172

Keywords:

Navigation