Skip to main content
Log in

Theoretically Screening of Carbon Dots As Corrosion Inhibitor: Effect of Size and Shape, Functional Group, and Nitrogen Doping

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The environmental-friendly corrosion inhibitors have been a hot topic in research. The corrosion inhibition performance of pure carbon dots (CDs), CDs functionalized by different functional groups, and N doped CDs (N–CDs) are introduced in this study. The parameters for predicting the inhibition performance and adsorption behaviors of CDs are investigated by density functional theory (DFT) calculation and molecular dynamics (MD) simulation. By considering the effects of shape and size, the functional groups, and N doping on the corrosion inhibition performance of CDs, the CDs with better predicted inhibition performance are screened. Besides, the interactions between functionalized N–CDs and the Fe(100) surface are explored. The results indicate that both N doping and the functionalization can improve the corrosion inhibition performance of CDs in a certain extent, especially when the two effect work together to show the best enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. Zhang, P. Ju, M. Pan, et al., Corros. Sci. 144, 74 (2018).

    Article  Google Scholar 

  2. Y. Ying, Z. Liu, J. Fan, et al., Arab. J. Chem. 13, 3137 (2020).

    Article  CAS  Google Scholar 

  3. P. R. Rhodes, Corrosion 57, 923 (2001).

    Article  CAS  Google Scholar 

  4. N. Yilmaz, A. Fitoz, Ÿ. Ergun, et al., Corros. Sci. 111, 110 (2016).

    Article  CAS  Google Scholar 

  5. A. Biswas and S. Pal, Appl. Surf. Sci. 353, 173 (2015).

    Article  CAS  Google Scholar 

  6. H. Wang, Y. Hao, S. Chen, et al., Corros. Sci. 137, 33 (2018).

    Article  CAS  Google Scholar 

  7. H. R. Obayes, G. H. Alwan, A. H. M. Alobaidy, et al., Chem. Centr. J. 8, 21 (2014).

    Article  Google Scholar 

  8. N. Kovačević, I. Milošev, and A. Kokalj, Corros. Sci. 98, 457 (2015).

    Article  Google Scholar 

  9. H. R. Obayes, A. A. Al-Amiery, G. H. Alwan, et al., J. Mol. Struct. 1138, 27 (2017).

    Article  CAS  Google Scholar 

  10. H. Mi, G. Xiao, and X. Chen, Comput. Theor. Chem. 1072, 7 (2015).

    Article  CAS  Google Scholar 

  11. M. Cui, S. Ren, Q. Xue, et al., J. Alloys Compd. 726, 680 (2017).

    Article  CAS  Google Scholar 

  12. Y. Ye, D. Zhang, Y. Zou, et al., J. Clean. Prod. 264, 121682 (2020).

  13. I. B. Obot, D. D. Macdonald, and Z. M. Gasem, Corros. Sci. 99, 1 (2015).

    Article  CAS  Google Scholar 

  14. S. Sun, Y. Geng, L. Tian, et al., Corros. Sci. 63, 140 (2012).

    Article  CAS  Google Scholar 

  15. D. Kumar, V. Jain, and B. Rai, Corros. Sci. 171, 108724 (2020).

  16. I. H. Ali, Molecules 26, 3679 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. E. Alibakhshi, M. Ramezanzadeh, S. A. Haddadi, et al., J. Clean. Prod. 210, 660 (2019).

    Article  CAS  Google Scholar 

  18. M. Goyal, H. Vashisht, A. Kumar, et al., J. Mol. Liq. 316, 113838 (2020).

  19. S. K. Saha, M. Murmu, N. C. Murmu, et al., J. Mol. Struct. 1245, 131098 (2021).

  20. R. E. Ambrusi, J. M. Arroyave, M. E. Centurión, et al., Phys. E (Amsterdam, Neth.) 114, 113640 (2019).

  21. Y. Ye, D. Yang, and H. Chen, J. Mater. Sci. Technol. 35, 2243 (2019).

    Article  CAS  Google Scholar 

  22. Y. Zhang, S. Zhang, B. Tan, et al., J. Colloid Interface Sci. 604, 1 (2021).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Ye, D. Zhang, and Y. Zou, J. Cleaner Prod. 264, 121682 (2020).

  24. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

  25. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  26. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  27. H. Sun, J. Phys. Chem. B 102, 7338 (1998).

    Article  CAS  Google Scholar 

  28. H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    Article  CAS  Google Scholar 

  29. V. S. Sastri and J. R. Perumareddi, Corrosion 53, 617 (1997).

    Article  CAS  Google Scholar 

  30. H. Tandon, T. Chakraborty, and V. Suhag, J. Struct. Chem. 60, 1725 (2019).

    Article  CAS  Google Scholar 

  31. I. B. Obot, S. Kaya, C. Kaya, et al., Phys. E (Amsterdam, Neth.) 80, 82 (2016).

  32. R. G. Pearson, Inorg. Chem. 27, 734 (1988).

    Article  CAS  Google Scholar 

  33. R. Hsissou, F. Benhiba, M. Khudhair, et al., J. King Saud Univ.-Sci. 32, 667 (2020).

    Google Scholar 

  34. Y. Choi, Y. Choi, O. Kwon, et al., Chem. Asian J. 13, 586 (2018).

    Article  PubMed  CAS  Google Scholar 

  35. X. Sun and Y. Li, Angew. Chem. Int. Ed. 43, 597 (2004).

    Article  Google Scholar 

  36. A. Rochdi, O. Kassou, N. Dkhireche, et al., Corros. Sci. 80, 442 (2014).

    Article  CAS  Google Scholar 

  37. H. R. Obayes, A. A. Al-Amiery, G. H. Alwan, et al., J. Mol. Struct. 1138, 27 (2017).

    Article  CAS  Google Scholar 

  38. I. B. Obot, Z. M. Gasem, and S. A. Umoren, Int. J. Electrochem. Sci. 9, 510 (2014).

    Google Scholar 

  39. S. Kaya, C. Kaya, L. Guo, et al., J. Mol. Liq. 219, 497 (2016).

    Article  CAS  Google Scholar 

  40. Y. Ye, D. Yang, H. Chen, et al., J. Hazard. Mater. 381, 121019 (2020).

  41. Y. Tang, L. Yao, C. Kong, et al., Corros. Sci. 53, 2046 (2011).

    Article  CAS  Google Scholar 

  42. S. K. Saha and P. Banerjee, RSC Adv. 5, 71120 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the National Supercomputing Center in Shenzhen for providing the computational resources and Materials Studio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengliang Dong.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Dong, Z. Theoretically Screening of Carbon Dots As Corrosion Inhibitor: Effect of Size and Shape, Functional Group, and Nitrogen Doping. Russ. J. Phys. Chem. 96, 2451–2458 (2022). https://doi.org/10.1134/S0036024422110061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110061

Keywords:

Navigation