Skip to main content
Log in

Non-Covalent Hybridization of Carbon Nanotube by Single-Stranded DNA Homodecamers: in-silico Approach

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The interaction of oligonucleotides dA10, dC10, dG10, and dT10 with single-walled carbon nanotube was investigated using molecular dynamics simulation. The distance of the mass center of each of the oligonucleotides with the carbon nanotube axis was calculated. The results show that this distance is as dA10 > dG10 > dC10 > dT10. The conformation of the main chain and single-stranded DNA side chain were investigated using pseudo angles (η, θ) and (χ, P) respectively. The results show that the interaction of the CNT with the main chain of oligonucleotides occurs from the region \({\text{C}}4_{{n - 1}}^{'}{-} {{{\text{P}}}_{n}}{-} {\text{C}}4_{n}^{'}{-} {{{\text{P}}}_{{n + 1}}}\), which is related to the angle η. The rotation of purine bases has also occurred more than the pyrimidine bases. The free energy analysis of interaction compared to the two distance criteria of end-to-end oligonucleotides and the number of residues that have π–π interaction with nanotubes shows that each of the four decamers has a π–π interaction with nanotubes. Nevertheless, their π–π interaction regions are at the end of the decamer for purine bases and in the first and middle regions for the pyrimidine bases. The results are in good agreement with the experimental data and the results of other simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Singhal, Z. Orynbayeva, R. V. K. Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, Nat. Nanotechnol. 6, 57 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. F. Patolsky, G. Zheng, and C. M. Lieber, ACS Publ. 78, 4260 (2006).

  3. L. Shao, Y. Gao, and F. Yan, Sensors 11, 11736 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assunção, J. Rosa, and P. V. Baptista, Sensors 12, 1657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Liu, X. Dong, and P. Chen, Chem. Soc. Rev. 41, 2283 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. C. Gao, Z. Guo, J. H. Liu, and X. J. Huang, Nanoscale 4, 948 (2012).

    Google Scholar 

  7. S.Kruss, A. J. Hilmer, J. Zhang, N. F. Reuel, B. Mu, and M. S. Strano, Crescent J. Med. Biol. Sci. 65, 1933 (2013).

    CAS  Google Scholar 

  8. S. Sotiropoulou and N. A. Chaniotakis, Anal. Bioanal. Chem. 375, 103 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. S. Gupta, C. N. Murthy, and C. R. Prabha, Int. J. Biol. Macromol. 108, 687 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. J. Barkauskas, L. Mikoliunaite, I. Paklonskaite, P. Genys, J. J. Petroniene, I. Morkvenaite-Vilkonciene, A. Ramanaviciene, U. Samukaite-Bubniene, and A. Ramanavicius, Mater. Sci. Eng. C 98, 515 (2019).

    Article  CAS  Google Scholar 

  11. A. Sobhan, J. Lee, and J. H. Oh, LWT–Food Sci. Technol. 6438 (19) (2019).

  12. F. N. Comba, M. R. Romero, F. S. Garay, and A. M. Baruzzi, Anal. Biochem. 550, 34 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. D. Wasik, A. Mulchandani, and M. V. Yates, Biosens. Bioelectron. 91, 811 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. K. Żelechowska, B. Trawiński, S. Dramińska, D. Majdecka, R. Bilewicz, and B. Kusz, Sens. Actuators, B 240, 1308 (2017).

    Article  Google Scholar 

  15. B. Dalkıran, P. E. Erden, and E. Kılıç, Talanta 167, 286 (2017).

    Article  PubMed  Google Scholar 

  16. J. P. Kim, B. Y. Lee, S. C. Hong, and S. J. Sim, Anal. Biochem. 381, 193 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. H. M. So, K. Won, Y. H. Kim, B. K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. O. Lee, J. Am. Chem. Soc. 127, 11906 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. F. Hu, S. Chen, C. Wang, R. Yuan, Y. Xiang, and C. Wang, Biosens. Bioelectron. 34, 202 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. P. He and L. Dai, Chem. Commun. 348 (3) (2004).

  20. E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, Nano Lett. 6, 371 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. J. Schork, D. Fallin, and J. S. Lanchbury, Clin. Genet. 58, 250 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. D. G. Wang et al., Science (Washington, DC, U. S.) 280 (5366), 1077 (1998).

    Article  CAS  Google Scholar 

  23. G. Lu, P. Maragakis, and E. Kaxiras, Nano Lett. 5, 897 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. H. Gao, Y. Kong, D. Cui, and C. S. Ozkan, Nano Lett. 3, 471 (2003).

    Article  CAS  Google Scholar 

  25. R. R. Johnson, A. C. Johnson, and M. L. Klein, Nano Lett. 8, 69 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. D. Roxbury, J. Mittal, and A. Jagota, Nano Lett. 12, 1464 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. R. R. Johnson, A. C. Johnson, and M. L. Klein, Small 6, 31 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. M. E. Hughes, E. Brandin, and J. A. Golovchenko, Nano Lett. 7, 1191 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. P. Avouris, M. Freitag, and V. Perebeinos, Nat. Photon. 2, 341 (2008).

    Article  CAS  Google Scholar 

  30. M. P. Monopoli, C. Aberg, A. Salvati, and K. A. Dawson, Nat. Nanotechnol. 7, 779 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, Nat. Mater. 2, 338 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. T. J. Macke et al., AmberTools Users’ Manual (2010), Vol. 1, p. 113.

    Google Scholar 

  33. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  34. D. Solow, in Wiley Encyclopedia of Computer Science and Engineering (Wiley, New York, 2007).

    Google Scholar 

  35. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).

    Article  CAS  Google Scholar 

  36. S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).

    Article  CAS  Google Scholar 

  37. U. Essmann, L. Perera, and M. L. Berkowitz, J. Chem. Phys. 103, 8577 (1995).

    Article  CAS  Google Scholar 

  38. M. Abraham, B. Hess, D. v. d. Spoel, E. Lindahl, and the GROMACS development team, GROMACS User Manual, Version 5.0.7 (2015).

  39. W. Martin, W. Zhu, and G. Krilov, J. Phys. Chem. B 2, 16076 (2008).

    Article  Google Scholar 

  40. C. Duarte, L. Wadley, and A. Pyle, Nucl. Acids Res. 31, 4755 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. L. M. Wadley, K. S. Keating, C. M. Duarte, and A. M. Pyle, J. Mol. Biol. 372, 942 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. C. Altona and M. Sundaralingam, J. Am. Chem. Soc. 94, 8205 (1972).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Bozorgmehr.

Ethics declarations

All authors of this research paper have declared that there is no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari-Ghanbarlo, M., Bozorgmehr, M.R. & Morsali, A. Non-Covalent Hybridization of Carbon Nanotube by Single-Stranded DNA Homodecamers: in-silico Approach. Russ. J. Phys. Chem. 96, 145–151 (2022). https://doi.org/10.1134/S0036024422010125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422010125

Keywords:

Navigation