Skip to main content

Comparison of Poly(rI) and Poly(rA) Adsorption on Carbon Nanotubes

  • Conference paper
  • First Online:
Nanomaterials Imaging Techniques, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 146))

  • 1517 Accesses

Abstract

A comparison of adsorption property of homopolynucleotides poly(rA) and poly(rI) on the single-walled carbon nanotubes (SWCNTs) showed that adsorption of the poor base stacked poly(rI) onto the nanotube in aqueous suspension is less effective than the high stacked poly(rA) the chain of which is of higher rigidity. Molecular dynamics modeling demonstrated that oligomer r(I)25 has an essential weaker binding energy to the carbon nanotube surface than r(A)25 (250 kcal/mol versus 350 kcal/mol). Structural analysis of oligomers on the nanotube surface revealed that the more ordered oligomer is of tendency to the helical conformation around the nanotube and this provides higher binding energy. On the contrary, a more flexible r(I)25 forms a stable loop kept away from the nanotube surface, which is strengthened by hypoxanthine H-bonding between bases located in different loop places. As well, in comparison with poly(rA), less effective adsorption of poly(rI) is confirmed with a weaker hypochromic effect of nanotubes covered with poly(rI) than with poly(rA), which originates from π-π-stacking of nitrogen bases with the nanotube surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    Article  Google Scholar 

  2. Hasan T, Tan PH, Bonaccorso F et al (2008) Polymer-assisted isolation of single wall carbon nanotubes in organic solvents for optical-quality nanotube-polymer composites. J Phys Chem C 112:20227–20232

    Article  Google Scholar 

  3. Zheng M, Jagota A, Strano M et al (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545–1548

    Article  ADS  Google Scholar 

  4. Star A, Stoddart JF, Steuerman D et al (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1725

    Article  Google Scholar 

  5. Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites. A review. Compos Sci Technol 72:72–84

    Article  Google Scholar 

  6. Kusner I, Srebnik S (2006) Conformational behavior of semi-flexible polymers confined to a cylindrical surface. Chem Phys Lett 430:84–88

    Article  ADS  Google Scholar 

  7. Gurevitch I, Srebnik S (2008) Conformational behavior of polymers adsorbed on nanotubes. J Chem Phys 128:144901-1–144901-8

    Google Scholar 

  8. Tallury SS, Pasquinelli MA (2010) Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J Phys Chem B 114:4122–4129

    Article  Google Scholar 

  9. Tallury SS, Pasquinelli MA (2010) Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J Phys Chem B 114:9349–9355

    Article  Google Scholar 

  10. Frischknecht AL, Martin MG (2008) Simulation of the adsorption of nucleotide monophosphates on carbon nanotubes in aqueous solution. J Phys Chem C 112:6271–6278

    Article  Google Scholar 

  11. Karachevtsev VA, Gladchenko GO, Karachevtsev MV et al (2008) Adsorption of poly(rA) on the carbon nanotube surface and its hybridization with poly(rU). Chem Phys Phys Chem 9:2872–2881

    Google Scholar 

  12. Martin W, Zhu W, Krilov G (2008) Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water. J Phys Chem B 112:16076–16089

    Article  Google Scholar 

  13. Karachevtsev MV, Lytvyn OS, Stepanian SG et al (2008) SWCNT-DNA and SWCNT-polyC hybrids: AFM study and computer modeling. J Nanosci Nanotechnol 8:1473–1480

    Google Scholar 

  14. Johnson RR, Kohlmeyer A, Johnson ATC et al (2009) Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett 9:537–541

    Article  ADS  Google Scholar 

  15. Johnson RR, Johnson ATC, Klein ML (2010) The nature of DNA-base–carbon-nanotube interactions. Small 6:31–34

    Article  Google Scholar 

  16. Roxbury D, Mittal J, Jagota A (2012) Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett 12:1464–1469

    Article  ADS  Google Scholar 

  17. Karachevtsev MV, Karachevtsev VA (2011) Peculiarities of homooligonucleotides wrapping around carbon nanotubes: molecular dynamics modeling. J Phys Chem B 115:9271–9279

    Article  Google Scholar 

  18. Tu X, Manohar S, Jagota A et al (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253

    Article  ADS  Google Scholar 

  19. Stepanian SG, Karachevtsev MV, Glamazda AYu et al (2009) Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes. J Phys Chem A 113:3621–3629

    Article  Google Scholar 

  20. Shukla MK, Dubey M, Zakar E et al (2009) Interaction of nucleic acid bases with single-walled carbon nanotube. Chem Phys Lett 480:269–272

    Article  ADS  Google Scholar 

  21. Karachevtsev VA, Glamazda AYu, Dettlaff-Weglikowska U et al (2006) Spectroscopic and SEM studies of SWCNTs: polymer solutions and films. Carbon 44:1292–1297

    Article  Google Scholar 

  22. Hughes ME, Brandin E, Golovchenko JA (2007) Optical absorption of DNA—carbon nanotube structures. Nano Lett 7:1191–1194

    Article  ADS  Google Scholar 

  23. Karachevtsev VA, Plokhotnichenko AM, Karachevtsev MV et al (2012) Decrease of carbon nanotube UV light absorption induced by π-stacking interaction with nucleotide bases. Carbon 48:3682–3691

    Article  Google Scholar 

  24. Cantor CR, Schimmel PR (1980) Biophysical Chemistry. W.H. Freeman and Company, San Francisco

    Google Scholar 

  25. Tinoco I Jr (1960) Hypochromism in polynucleotides. J Am Chem Soc 82:4785–4790

    Article  Google Scholar 

  26. Holcomb DN, Timasheff SN (1968) Temperature dependence of the hydrogen ion equilibria in poly(riboadenylic acid). Biopolymers 6:513–529

    Article  Google Scholar 

  27. Brams J, Michelson AM, van Holde KE (1966) Adenylate oligomers in single- and double-strand conformation. J Mol Biol 15:467–488

    Article  Google Scholar 

  28. Thiele D, Guschlbauer W (1973) The structures of polyinosinic acid. Biophysik 9:261–277

    Article  Google Scholar 

  29. Howard FB, Miles HT (1982) Poly(inosinic acid) helices: essential chelation of alkali metal ions in the axial channel. Biochemistry 21:6736–6745

    Article  Google Scholar 

  30. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802

    Article  Google Scholar 

  31. Foloppe N, MacKerell AD Jr (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comp Chem 21:86–104

    Article  Google Scholar 

  32. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Molec Graph 14:33–38

    Google Scholar 

  33. Seol Y, Skinner GM, Visscher K et al (2007) Stretching of homopolymeric RNA reveals single-stranded helices and base-stacking. Phys Rev Lett 98:158103-1–158103-4

    Google Scholar 

  34. Cech CL, Tinoco I Jr (1976) Circular dichroism calculations for polyinosinic acid in proposed multi-stranded geometries. Nucl Acids Res 3:399–404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Karachevtsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Karachevtsev, M.V., Gladchenko, G.O., Karachevtsev, V.A. (2013). Comparison of Poly(rI) and Poly(rA) Adsorption on Carbon Nanotubes. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7675-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7675-7_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7674-0

  • Online ISBN: 978-1-4614-7675-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics