Skip to main content
Log in

Formation of Bulk Alumina Ceramics by Electrophoretic Deposition from Nanoparticle Suspensions

  • PROBLEMS, TENDENCIES IN DEVELOPMENT, AND CHALLENGES IN PHYSICAL CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

High-density ceramics are prepared via electrophoretic deposition (EPD) from suspensions of alumina-based nanopowders. Al2O3-based nanopowders are obtained through the electrical explosion of wires (EEW) using wire made of an Al–Mg alloy with a magnesium content of 1.3 wt %. Stable nonaqueous suspensions for EPD are prepared using slightly aggregated spherical Al2O3 nanoparticles with a specific surface area of 40 m2/g. With EPD and sintering at 1650°С, it is possible to prepare high-density ceramics with a density of 3.93 g/cm3 (98.6% of the theoretical value) and a microhardness of 17.7 ± 0.5 GPa. Using a nanopowder based on alumina prepared from the Al–Mg alloy contributes to a substantial improvement in the sinterability of ceramics, due to the formation of MgAl2O4 spinel at a content of ≈2.5 wt %, which allows the density and microhardness of ceramic samples to be raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. Hirata, T. Shimonosono, S. Sameshima, and H. Tominaga, Ceram. Int. 41, 11449 (2015). https://doi.org/10.1016/j.ceramint.2015.05.109

    Article  CAS  Google Scholar 

  2. A. Ruys, Alumina Ceramics: Biomedical and Clinical Applications (Woodhead, UK, 2019).

    Google Scholar 

  3. R. Rakshit and A. Das, Precis. Eng. 59, 90 (2019). https://doi.org/10.1016/j.precisioneng.2019.05.009

    Article  Google Scholar 

  4. R. Boidin, T. Halenkovič, V. Nazabal, et al., Ceram. Int. 42, 1177 (2016). https://doi.org/10.1016/j.ceramint.2015.09.048

    Article  CAS  Google Scholar 

  5. H. Korhonen, A. Syväluoto, J. T. T. Leskinen, and R. Lappalainen, Opt. Laser Technol. 98, 373 (2018). https://doi.org/10.1016/j.optlastec.2017.07.050

    Article  CAS  Google Scholar 

  6. V. Kelekanjeri, G. Siva Kumar, W. B. Carter, and J. M. Hampikian, Thin Solid Films 515, 1905 (2006). https://doi.org/10.1016/j.tsf.2006.07.033

    Article  CAS  Google Scholar 

  7. Y. Ogita and N. Saito, Thin Solid Films 575, 47 (2015). https://doi.org/10.1016/j.tsf.2014.10.022

    Article  CAS  Google Scholar 

  8. J. He, D. Avnir, and L. Zhang, Acta Mater. 174, 418 (2019). https://doi.org/10.1016/j.actamat.2019.05.062

    Article  CAS  Google Scholar 

  9. V. V. Ivanov, S. N. Paranin, and V. R. Khrustov, Phys. Met. Metallogr. 94, S98 (2002).

    Google Scholar 

  10. A. Kaygorodov, C. Rhee, W. Kim, et al., Mater. Sci. Forum. 534536, 1053 (2007). https://doi.org/10.4028/www.scientific.net/MSF.534-536.1053

    Article  Google Scholar 

  11. C. Promdej, V. Pavarajarn, S. Wada, et al., Curr. Appl. Phys. 9, 960 (2009). https://doi.org/10.1016/j.cap.2008.09.011

    Article  Google Scholar 

  12. A. Makiya, S. Tanaka, D. Shoji, et al., J. Eur. Ceram. Soc. 27, 3339 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.041

    Article  CAS  Google Scholar 

  13. Y. Takao, T. Hotta, M. Naito, et al., J. Eur. Ceram. Soc. 22, 397 (2002). https://doi.org/10.1016/S0955-2219(01)00307-7

    Article  CAS  Google Scholar 

  14. G. Okuma, S. Watanabe, K. Shinobe, et al., Sci. Rep. 9, 11595 (2019). https://doi.org/10.1038/s41598-019-48127-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. P. Bowen and C. Carry, Powder Technol. 128, 248 (2002). https://doi.org/10.1016/s0032-5910(02)00183-3

    Article  CAS  Google Scholar 

  16. J. A. Lewis, J. Am. Ceram. Soc. 83, 2341 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01560.x

    Article  CAS  Google Scholar 

  17. I. Corni, M. P. Ryan, and A. R. Boccaccini, J. Eur. Ceram. Soc. 28, 1353 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.011

    Article  CAS  Google Scholar 

  18. E. Pikalova and E. Kalinina, J. Energy Prod. Manage. 4, 1 (2019). https://doi.org/10.2495/EQ-V4-N1-1-27

    Article  Google Scholar 

  19. E. Yu. Pikalova and E. G. Kalinina, Renew. Sust. Energ. Rev. 116, 109440 (2019). https://doi.org/10.1016/j.rser.2019.109440

    Article  CAS  Google Scholar 

  20. E. G. Kalinina and E. Yu. Pikalova, Russ. Chem. Rev. 88, 1179 (2019). https://doi.org/10.1070/RCR4889

    Article  CAS  Google Scholar 

  21. S. Kishida, D. Ju, H. He, and Y. Li, J. Environ. Sci. 21, S112 (2009). https://doi.org/10.1016/S1001-0742(09)60051-6

    Article  Google Scholar 

  22. S. Novak and K. König, Ceram. Int. 35, 2823 (2009). https://doi.org/10.1016/j.ceramint.2009.03.033

    Article  CAS  Google Scholar 

  23. G. Song, G. Xu, Y. Quan, et al., Surf. Coat. Technol. 286, 268 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.039

    Article  CAS  Google Scholar 

  24. T. Uchikoshi and Y. Sakka, J. Am. Ceram. Soc. 91, 1923 (2008). https://doi.org/10.1111/j.1551-2916.2008.02379.x

    Article  CAS  Google Scholar 

  25. K. König, S. Novak, A. R. Boccaccini, and S. Kobe, J. Mater. Process. Technol. 210, 96 (2010). https://doi.org/10.1016/j.jmatprotec.2009.08.007

    Article  CAS  Google Scholar 

  26. K. Moritz and C. G. Aneziris, Key Eng. Mater. 654, 101 (2015). https://doi.org/10.4028/www.scientific.net/KEM.654.101

    Article  Google Scholar 

  27. A. Nold, T. Assion, J. Zeiner, and R. Clasen, Key Eng. Mater. 412, 307 (2009). https://doi.org/10.4028/www.scientific.net/kem.412.307

    Article  CAS  Google Scholar 

  28. A. J. Pascall, F. Qian, G. Wang, et al., Adv. Mater. 26, 2252 (2014). https://doi.org/10.1002/adma.201304953

    Article  CAS  PubMed  Google Scholar 

  29. L. Vogt, M. Schäfer, D. Kurth, and F. Raether, Ceram. Int. 45, 14214 (2019). https://doi.org/10.1016/j.ceramint.2019.04.129

    Article  CAS  Google Scholar 

  30. K. Maca, H. Hadraba, and J. Cihlar, Ceram. Int. 30, 843 (2004). https://doi.org/10.1016/j.ceramint.2003.09.021

    Article  CAS  Google Scholar 

  31. M. Shan, X. Mao, J. Zhang, and S. Wang, Ceram. Int. 35, 1855 (2009). https://doi.org/10.1016/j.ceramint.2008.10.033

    Article  CAS  Google Scholar 

  32. D. Drdlik, T. Moravek, J. Rahel, et al., Ceram. Int. 44, 9787 (2018). https://doi.org/10.1016/j.ceramint.2018.02.215

    Article  CAS  Google Scholar 

  33. Y. A. Kotov, J. Nanopart. Res. 5, 539 (2003). https://doi.org/10.1023/B:NANO.0000006069.45073.0b

    Article  Google Scholar 

  34. Y. A. Kotov, Nanotechnol. Russ. 4, 415 (2009). https://doi.org/10.1134/S1995078009070039

    Article  Google Scholar 

  35. A. P. Safronov, E. G. Kalinina, T. A. Smirnova, D. V. Leiman, and A. V. Bagazeev, Russ. J. Phys. Chem. A 84, 2122 (2010). https://doi.org/10.1134/S0036024410120204

    Article  CAS  Google Scholar 

  36. E. G. Kalinina, O. M. Samatov, and A. P. Safronov, Inorg. Mater. 52, 858 (2016). https://doi.org/10.1134/S0020168516080094

    Article  CAS  Google Scholar 

  37. E. G. Kalinina, A. A. Efimov, and A. P. Safronov, Thin Solid Films 612, 66 (2016). https://doi.org/10.1016/j.tsf.2016.05.039

    Article  CAS  Google Scholar 

  38. E. Kalinina, E. Pikalova, A. Kolchugin, et al., Materials 12, 2545 (2019). https://doi.org/10.3390/ma12162545

    Article  CAS  PubMed Central  Google Scholar 

  39. E. G. Kalinina, A. A. Efimov, and A. P. Safronov, Inorg. Mater. 52, 1301 (2016). https://doi.org/10.1134/S0020168516110054

    Article  CAS  Google Scholar 

  40. A. R. Boccaccini and C. Kaya, Ceram. Int. 28, 893 (2002). https://doi.org/10.1016/s0272-8842(02)00070-6

    Article  CAS  Google Scholar 

  41. Z. Harun, N. F. Ismail, and N. A. Badarulzaman, Adv. Mater. Res. 488489, 335 (2012). https://doi.org/10.4028/www.scientific.net/AMR.488-489.335

    Article  CAS  Google Scholar 

  42. Yu. A. Kotov, I. V. Beketov, E. I. Azarkevich, and A. M. Murzakaev, in Proceedings of the 9th CIMTEC-World Ceramic Congress on Ceramics: Getting into the 2000s, 1998, p. 277.

  43. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).

    Google Scholar 

  44. S. S. Dukhin and B. V. Derjaguin, Surface and Colloid Sciences (Wiley-Interscience, New York, 1974).

    Google Scholar 

  45. S. Bhattacharjee, J. Control. Rel. 235, 337 (2016). https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  Google Scholar 

  46. I. Aznam, J. C. W. Mah, A. Muchtar, et al., Zhejiang Univ. Sci. A 19, 811 (2018). https://doi.org/10.1631/jzus.A1700604

    Article  CAS  Google Scholar 

  47. L. Besra and M. Liu, Prog. Mater. Sci. 52, 1 (2007). https://doi.org/10.1016/j.pmatsci.2006.07.001

    Article  CAS  Google Scholar 

  48. Yu. Solomentsev, M. Böhmer, and J. L. Anderson, Langmuir 13, 6058 (1997). https://doi.org/10.1021/la970294a

    Article  CAS  Google Scholar 

  49. K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum (Alcoa Res. Labor., 1987).

  50. I. J. McColm, Ceramic Hardness (Plenum, New York, 1990).

    Book  Google Scholar 

  51. R. F. Cook and G. M. Pharr, J. Am. Ceram. Soc. 73, 787 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05119.x

    Article  CAS  Google Scholar 

  52. K.-Y. Lee, L. C. G. Cropsey, B. R. Tyszka, and E. D. Case, Mater. Res. Bull. 32, 287 (1997). https://doi.org/10.1016/S0025-5408(96)00196-1

    Article  CAS  Google Scholar 

  53. R. G. Munro, J. Am. Ceram. Soc. 80, 1919 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03074.x

    Article  CAS  Google Scholar 

  54. I. Chen and X. Wang, Nature (London, U.K.) 404, 168 (2000). https://doi.org/10.1038/35004548

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.V. Beketov, head of the Laboratory of Pulsed Processes, and A.V. Bagazeev for developing the EEW technique for the preparation of nanopowders. We also thank K.I. Demidova for his help in our X-ray diffraction studies of powders and ceramics, A.M. Murzakaev for assisting in our studies of particle morphology, and engineer S.Yu. Ivin for helping to determine the density and porosity of ceramic samples by hydrostatic weighing.

Funding

This work was performed on equipment at the shared resource centers of the Institute of Electrophysics and the Institute of High Temperature Electrochemistry (“Composition of compounds”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kalinina.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.G., Rusakova, D.S., Kaigorodov, A.S. et al. Formation of Bulk Alumina Ceramics by Electrophoretic Deposition from Nanoparticle Suspensions. Russ. J. Phys. Chem. 95, 1519–1528 (2021). https://doi.org/10.1134/S0036024421080148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421080148

Keywords:

Navigation