Skip to main content
Log in

Kinetics and Mechanism of Rapid Oxidation of Acetaminophen by Sodium Periodate in the Presence of Catalyst

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Kinetic studies of the novel oxidation of acetaminophen by sodium periodate are discussed with an emphasis on structure and reactivity by using kinetic approach. The reactions were catalyzed by Os(VIII). The kinetics of the reaction was studied as a function of temperature, ionic strength, dielectric constant of the medium, concentrations of the salt and the added reaction product to learn the mechanism of the reaction. The active species of catalyst and oxidant have been identified. Activation parameters have also been evaluated using the Arrhenius and Eyring plots. A suitable mechanism consistent with the observed kinetic results has been suggested and the related rate law deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Hudlicky, Oxidations in Organic Chemistry, Vol. 186 of ACS Monograph (Am. Chem. Soc., Washington, DC, 1990), p. 838.

  2. G. A. Russel, E. G. Janzen, A. G. Bemis, E. J. Geels, J. Moye, S. Mak, and E. T. Strom, in Selective Oxidation Processes, Ed. by E. K. Fields (Am. Chem. Soc., Washington, DC, 1965), Vol. 51, p. 112.

    Google Scholar 

  3. E. Brillas, I. Sires, C. Arias, P. L. Cabot, F. Centellas, R. M. Rodriguez, and J. A. Garrido, Chemosphere 58, 399 (2005).

    Article  CAS  Google Scholar 

  4. I. Sires, J. A. Garrido, R. M. Rodriguez, P. L. Cabot, F. Centellas, C. Arias, and E. Brillas, J. Electrochem. Soc. 153, D1 (2006).

    Article  CAS  Google Scholar 

  5. K. Waterston, J. W. J. Wang, D. Bejan, and N. J. Bunce, J. Appl. Electrochem. 36, 227 (2006).

    Article  CAS  Google Scholar 

  6. D. Vogna, R. Marotta, A. Napolitano, and M. d’Ischia, J. Org. Chem. 67, 6143 (2002).

    Article  CAS  Google Scholar 

  7. R. Andreozzi, V. Caprio, R. Marotta, and D. Vogna, Water Res. 37, 993 (2003).

    Article  CAS  Google Scholar 

  8. W. Griffith, The Chemistry of Rarer Platinum Metals (Wiley-Interscience, New York, 1967), p. 141.

    Google Scholar 

  9. V. Rassolov, M. Ratner, J. Pople, et al., J. Comp. Chem. 22, 976 (2001). https://doi.org/10.1002/jcc.1058

    Article  CAS  Google Scholar 

  10. M. C. Agrawal and S. K. Upadhyay, J. Sci. Ind. Res. 42, 508 (1983);

    CAS  Google Scholar 

  11. G. H. Hugar and S. T. Nandibewoor, Trans. Met. Chem. 19, 215 (1994).

    Article  CAS  Google Scholar 

  12. A. Singh, S. P. Singh, and A. K. Singh, J. Mol. Catal. A 266, 226 (2007).

    Article  Google Scholar 

  13. A. K. Singh, B. Jain, R. Negi, Y. Katre, and S. P. Singh, Open Catal. J. 2, 12 (2009).

    Article  CAS  Google Scholar 

  14. P. Veerasomaiah, K. Bal Reddy, B. Sethuram, and T. Navaneeth Rao, Indian J. Chem. A 26, 402 (1987).

    Google Scholar 

  15. G. J. Buistc, A. Bunton, and W. C. P. Hipperson, J. Chem. Soc. B, 2128 (1971).

  16. L. Maros, I. Molnar-Perel, E. Schissel, and V. Szerdahelyi, J. Chem. Soc. Perkin Trans. 11, 39 (1980).

    Article  Google Scholar 

  17. G. Dahlgre and D. K. Reed, J. Am. Chem. Soc. 71, 1380 (1967).

    Article  Google Scholar 

  18. M. P. Rao, B. S. Sethuram, and N. N. Rao, J. Indian Chem. Soc. 57, 149 (1980).

    CAS  Google Scholar 

  19. J. C. Bailar, H. J. Emeleus, S. R. Nyholm, and A. F. Trotman-Dikenson, Comprehensive Inorganic Chemistry (Pergamon, Oxford, 1975), Vol. 2, p. 1456.

    Google Scholar 

  20. K. T. Sirsalmath, C. V. Hiremath, and T. Nandibewoor Sharanappa, Appl. Catal. A 305, 79 (2006).

    Article  CAS  Google Scholar 

  21. Yang Liming, E. Yu Liya, and B. Ray Madhumita, Environ. Sci. Technol. 43, 460 (2009).

    Article  CAS  Google Scholar 

  22. T. S. Kiran, D. C. Hiremath, and S. T. Nandibewoor, Z. Phys. Chem. 221, 501 (2007).

    Article  CAS  Google Scholar 

  23. P. Pyykko and L. Laaksonen, J. Phys. Chem. 88, 4892 (1984). https://doi.org/10.1021/j150665a017

    Article  CAS  Google Scholar 

  24. G. Sridevi, N. Annapurna, and P. Vani, Chem. Sci. Trans. 4, 552 (2015).

    CAS  Google Scholar 

  25. M. Gupta, Srivastava, and S. Srivastava, Bull. Chem. React. Eng. Catal. 13, 355 (2017). https://doi.org/10.9767/bcrec.13.2.1583.355-364

    Article  CAS  Google Scholar 

  26. S. J. Malode, N. P. Shetti, and S. T. Nandibewoor, J. Chem. Sci. 124, 421 (2012).

    CAS  Google Scholar 

  27. S. Srivastava and M. Gupta, Bull. Catal. Soc. India. 14, 1 (2015).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors convey their profound thanks to the Head, Department of Chemistry, University of Lucknow, Lucknow for providing laboratory facilities, spectral analysis and central facility for computational research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Gupta.

Ethics declarations

None of the authors of the above manuscript has declared any conflict of interest which may arise from being named as an author in the manuscript.

APPENDIX

APPENDIX

Derivation of rate law for Scheme 2:

scheme 2

Scheme 2.

\([{\text{Os}}{{({\text{VIII}})}_{T}}]\) is equal to sum of concentration of,

$$\frac{{d[{\text{IO}}_{4}^{ - }]}}{{dt}} = {\text{rate}} = {{k}_{3}}[{\text{IO}}_{4}^{ - }][{\text{Complex}}],$$
(1)
$${\text{Os}}{{({\text{VIII}})}_{T}} = ~~[{{{\text{C}}}_{1}}] + [{{{\text{C}}}_{2}}] + [{{{\text{C}}}_{3}}],~$$
(2)
$$\begin{gathered} \frac{{d[{{{\text{C}}}_{1}}]}}{{dt}} = - {{k}_{1}}~[{{{\text{C}}}_{1}}][{\text{O}}{{{\text{H}}}^{ - }}] + {{k}_{{ - 1}}}[{{{\text{C}}}_{2}}] \\ - \;{{k}_{2}}[{{{\text{C}}}_{1}}][{\text{PAM}}] + {{k}_{{ - 2}}}[{{{\text{C}}}_{3}}]. \\ \end{gathered} $$
(3)

On applying steady state approximation to Eq. (3) we get,

$$\begin{gathered} - {{k}_{1}}[{{{\text{C}}}_{1}}][{\text{O}}{{{\text{H}}}^{ - }}] + {{k}_{{ - 1}}}[{{{\text{C}}}_{2}}] \\ - \;{{k}_{2}}[{{{\text{C}}}_{1}}][{\text{PAM}}] + {{k}_{{ - 2}}}[{{{\text{C}}}_{3}}] = 0. \\ \end{gathered} $$
(4)

Similarly we have rate of formation of [\({{{\text{C}}}_{2}}]\),

$$\frac{{d[{{{\text{C}}}_{2}}]}}{{dt}} = {{k}_{1}}[{{{\text{C}}}_{1}}][{\text{O}}{{{\text{H}}}^{ - }}] - {{k}_{{ - 1}}}[{{{\text{C}}}_{2}}].$$
(5)

On applying steady state approximation to the above equation we get,

$${{k}_{1}}[{{{\text{C}}}_{1}}][{\text{O}}{{{\text{H}}}^{ - }}] - {{k}_{{ - 1}}}[{{{\text{C}}}_{2}}] = 0,$$
(6)
$$[{{{\text{C}}}_{2}}] = \frac{{{{k}_{1}}[{{{\text{C}}}_{1}}][{\text{O}}{{{\text{H}}}^{ - }}]}}{{{{k}_{{ - 1}}}}}.$$
(7)

From Eqs. (4) and (6) we get,

$$[{{{\text{C}}}_{1}}] = \frac{{{{k}_{{ - 2}}}[{{{\text{C}}}_{3}}]}}{{{{k}_{2}}[{\text{PAM}}]}}.$$
(8)

Putting the value of \([{{{\text{C}}}_{1}}]\) in Eq. (7) we get,

$$\begin{gathered} \text{[}{{{\text{C}}}_{2}}] = \frac{{{{k}_{1}}{{k}_{{ - 2}}}[{\text{O}}{{{\text{H}}}^{ - }}][{{{\text{C}}}_{3}}]}}{{{{k}_{{ - 1~~}}}{{k}_{2}}[{\text{PAM}}]}}, \\ [{{{\text{C}}}_{2}}] = \frac{{{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}][{{{\text{C}}}_{3}}]}}{{{{K}_{2}}[{\text{PAM}}]}}~\quad \left\{ {\because {{K}_{1}} = \frac{{{{k}_{1}}}}{{{{k}_{{ - 1}}}}},\;{{K}_{{2~}}} = \frac{{{{k}_{2}}}}{{{{k}_{{ - 2}}}}}} \right\}. \\ \end{gathered} $$
(9)

Therefore from Eqs. (2), (8), and (9), we get total concentration of catalyst i.e.,

$${\text{Os}}{{({\text{VIII}})}_{T}} = \frac{{[{{{\text{C}}}_{3}}]}}{{{{K}_{2}}[{\text{PAM}}]}} + \frac{{{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}][{{{\text{C}}}_{3}}]}}{{{{K}_{2}}[{\text{PAM}}]}} + [{{{\text{C}}}_{3}}]$$
$$\begin{gathered} = \frac{{[{{{\text{C}}}_{3}}]}}{{{{K}_{2}}[{\text{PAM}}]}} + \frac{{{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}][{{{\text{C}}}_{3}}]}}{{{{K}_{2}}[{\text{PAM}}]}} + ~[{{{\text{C}}}_{3}}] \\ = [{{{\text{C}}}_{3}}]\left\{ {\frac{{1 + ~~{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}] + {{K}_{2}}[{\text{PAM}}]}}{{{{K}_{2}}[{\text{PAM}}]}}} \right\}, \\ \end{gathered} $$
(10)
$$[{{{\text{C}}}_{3}}] = \left\{ {\frac{{{{K}_{2}}[{\text{PAM}}][{\text{Os}}{{{({\text{VIII}})}}_{T}}]}}{{1 + ~{{K}_{1}}[{\text{O}}{{{\text{H}}}^{ - }}] + ~{{K}_{2}}[{\text{PAM}}]}}} \right\}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Srivastava, A. & Srivastava, S. Kinetics and Mechanism of Rapid Oxidation of Acetaminophen by Sodium Periodate in the Presence of Catalyst. Russ. J. Phys. Chem. 95, 1143–1151 (2021). https://doi.org/10.1134/S0036024421060145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421060145

Keywords:

Navigation