Skip to main content
Log in

Kinetics of N-Phosphonomethyl Iminodiacetic Acid Catalytic Oxidation with Hydrogen Peroxide Under the Phase-Transfer Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Oxidation of the N–phosphonomethyl iminodiacetic acid (PMIDA) with hydrogen peroxide in a two-phase system (aqueous phase—organic phase) in the presence of the [(Octn)3NMe]3{PO4[WO(O2)2]4} catalyst was studied and the kinetic parameters of this reaction were determined. It was found that the PMIDA oxidation with aqueous H2O2 proceeds only in the presence of the catalyst giving PMIDA N-oxide as the main product. Under the studied conditions, the reaction orders with respect to the reagents (PMIDA and H2O2) and the catalyst were found to be the first. The apparent activation energy of the reaction for the temperature range of 313–343 K is 37 ± 3 kJ/mol.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Mfuh AM, Larionov OV (2015) Heterocyclic N-oxides - an emerging class of therapeutic agents. Curr Med Chem 22:2819–2857. https://doi.org/10.2174/0929867322666150619104007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heffernan PL, Shaw PD, Wu MM, Davies CJ (2018) Personal cleansing composition. GB2552400, 26 p

  3. Matharu NK (2015) Disinfectant composition. GB2518967, 31 p

  4. Gaudreault R (2014) Hard surface cleaning composition. US2014066356, 7 p

  5. Bur SK (2014) 6.17 Polonovski- and Pummerer-type Reactions and the Nef Reaction. In: Compr. Org. Synth. II. Elsevier, pp 755–801. https://doi.org/10.1016/B978-0-08-097742-3.00626-1

  6. Do Pham DD, Kelso GF, Yang Y, Hearn MTW (2014) Studies on the oxidative N-demethylation of atropine, thebaine and oxycodone using a Fe III -TAML catalyst. Green Chem 16:1399–1409. https://doi.org/10.1039/C3GC41972J

    Article  CAS  Google Scholar 

  7. Massaro A, Mordini A, Mingardi A, Klein J, Andreotti D (2011) A new sequential intramolecular cyclization based on the boekelheide rearrangement. European J Org Chem 2011:271–279. https://doi.org/10.1002/ejoc.201000936

    Article  CAS  Google Scholar 

  8. Ellis GL, O’Neil IA, Ramos VE, Cleator E, Kalindjian SB, Chorlton AP, Tapolczay DJ (2007) The synthesis of functionalised chiral bicyclic lactam and lactone N-oxides using a tandem Cope elimination/reverse Cope elimination protocol. Tetrahedron Lett 48:1683–1686. https://doi.org/10.1016/j.tetlet.2007.01.045

    Article  CAS  Google Scholar 

  9. Larionov OV, Stephens D, Mfuh A, Chavez G (2014) Direct, catalytic, and regioselective synthesis of 2-Alkyl-, Aryl-, and Alkenyl-substituted N -heterocycles from N-oxides. Org Lett 16:864–867. https://doi.org/10.1021/ol403631k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Commandeur C, Commandeur M, Bathany K, Kauffmann B, Edmunds AJF, Maienfisch P, Ghosez L (2011) Study of the oxidation of 3-hydroxypyrroloindoles to pyrrolobenzoxazine alkaloids. Tetrahedron 67:9899–9908. https://doi.org/10.1016/j.tet.2011.09.112

    Article  CAS  Google Scholar 

  11. Cui L, Peng Y, Zhang L (2009) A two-step, formal [4 + 2] approach toward Piperidin-4-ones via Au catalysis. J Am Chem Soc 131:8394–8395. https://doi.org/10.1021/ja903531g

    Article  CAS  PubMed  Google Scholar 

  12. Oh K, Li J-Y, Ryu J (2010) Brucine N-oxide-catalyzed Morita–Baylis–Hillman reaction of vinyl ketones: a mechanistic implication of dual catalyst system with proline. Org Biomol Chem 8:3015. https://doi.org/10.1039/C003667F

    Article  CAS  PubMed  Google Scholar 

  13. Bull JA, Mousseau JJ, Pelletier G, Charette AB (2012) Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N -activated pyridines. Chem Rev 112:2642–2713. https://doi.org/10.1021/cr200251d

    Article  CAS  PubMed  Google Scholar 

  14. Yan G, Borah AJ, Yang M (2014) Recent advances in catalytic functionalization of N-oxide compounds via C-H bond activation. Adv Synth Catal 356:2375–2394. https://doi.org/10.1002/adsc.201400203

    Article  CAS  Google Scholar 

  15. Cai X, Sha M, Guo C, Pan RM (2012) Synthesis of tertiary amine N-oxides - a review. Asian J Chem 24:3781–3784

    CAS  Google Scholar 

  16. Larionov OV, Stephens D, Mfuh AM, Arman HD, Naumova AS, Chavez G, Skenderi B (2014) Insights into the mechanistic and synthetic aspects of the Mo/P-catalyzed oxidation of N-heterocycles. Org Biomol Chem 12:3026–3036. https://doi.org/10.1039/C4OB00115J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pai ZP, Yushchenko DY, Khlebnikova TB, Parmon VN (2015) N-phosphonomethyl iminodiacetic acid N-oxide synthesis in the presence of bifunctional catalysts based on tungsten complexes. Catal Commun 71:102–105. https://doi.org/10.1016/j.catcom.2015.08.021

    Article  CAS  Google Scholar 

  18. Tian J, Shi H, Li X, Yin Y, Chen L (2012) Coupling mass balance analysis and multi-criteria ranking to assess the commercial-scale synthetic alternatives: a case study on glyphosate. Green Chem 14:1990–2000. https://doi.org/10.1039/C2GC35349K

    Article  CAS  Google Scholar 

  19. Fields DL (1991) Process for producing N-phosphonomethyl glycine. US5023369, 4 p

  20. Pai ZP, Chesalov YA, Berdnikova PV, Uslamin EA, Yushchenko DY, Uchenova YV, Khlebnikova TB, Baltakhinov VP, Kochubey DI, Bukhtiyarov VI (2020) Tungsten peroxopolyoxo complexes as advanced catalysts for the oxidation of organic compounds with hydrogen peroxide. Appl Catal A Gen 604:117786. https://doi.org/10.1016/j.apcata.2020.117786

    Article  CAS  Google Scholar 

  21. Franz JE (1975) N-Organo-N-phosphonomethylglycine-N-oxides and plant growth regulant and phytotoxicant compositions containing same. US4062669, 13 p

  22. Oswald AA, Guertin DL (1963) Organic nitrogen compounds. I. Peroxide intermediates of tertiary alkylamine oxidation by hydrogen peroxide. J Org Chem 28:651–657. https://doi.org/10.1021/jo01038a012

    Article  CAS  Google Scholar 

  23. Pai ZP, Tolstikov AG, Berdnikova PV, Kustova GN, Khlebnikova TB, Selivanova NV, Shangina AB, Kostrovskii VG (2005) Catalytic oxidation of olefins and alcohols with hydrogen peroxide in a two-phase system giving mono- and dicarboxylic acids. Russ Chem Bull 54:1847–1854. https://doi.org/10.1007/s11172-006-0047-z

    Article  CAS  Google Scholar 

  24. Huckaba CE, Keyes FG (1948) The accuracy of estimation of hydrogen peroxide by potassium permanganate titration. J Am Chem Soc 70:1640–1644. https://doi.org/10.1021/ja01184a098

    Article  CAS  PubMed  Google Scholar 

  25. Murzin DY, Salmi T (2016) Catalytic Kinetics: Chemistry and Engineering: Second Edition, 2nd ed. Catal Kinet Chem Eng Second Ed. https://doi.org/10.1016/C2013-0-18839-3

  26. Pai ZP, Selivanova NV, Oleneva PV, Berdnikova PV, Beskopyl’nyi AM (2017) Catalytic oxidation of α-alkenes with hydrogen peroxide to carboxylic acids in the presence of peroxopolyoxotungstate complexes. Catal Commun 88:45–49. https://doi.org/10.1016/j.catcom.2016.09.019

    Article  CAS  Google Scholar 

  27. Timofeeva MN, Pai ZP, Tolstikov AG, Kustova GN, Selivanova NV, Berdnikova PV, Brylyakov KP, Shangina AB, Utkin VA (2003) Epoxidation of cycloolefins with hydrogen peroxide in the presence of heteropoly acids combined with phase transfer catalyst. Russ Chem Bull 52:480–486. https://doi.org/10.1023/A:1023495824378

    Article  CAS  Google Scholar 

  28. Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M (1988) Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J Org Chem 53:3587–3593. https://doi.org/10.1021/jo00250a032

    Article  CAS  Google Scholar 

  29. Sato K, Hyodo M, Aoki M, Zheng X-Q, Noyori R (2001) Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent- and halogen-free conditions. Tetrahedron 57:2469–2476. https://doi.org/10.1016/S0040-4020(01)00068-0

    Article  CAS  Google Scholar 

  30. Craven M, Yahya R, Kozhevnikova EF, Robertson CM, Steiner A, Kozhevnikov IV (2016) Alkylaminophosphazenes as efficient and tuneable phase-transfer agents for polyoxometalate-catalysed biphasic oxidation with hydrogen peroxide. ChemCatChem 8:200–208. https://doi.org/10.1002/cctc.201500922

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project AAA-A21-121011390007-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana B. Khlebnikova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushchenko, D.Y., Pai, Z.P. & Khlebnikova, T.B. Kinetics of N-Phosphonomethyl Iminodiacetic Acid Catalytic Oxidation with Hydrogen Peroxide Under the Phase-Transfer Conditions. Catal Lett 152, 2025–2032 (2022). https://doi.org/10.1007/s10562-021-03798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03798-z

Keywords

Navigation