Skip to main content
Log in

Effect of Concentrations of Fe2+ and Fe3+ on the Corrosion Behavior of Carbon Steel in Cl and SO42− Aqueous Environments

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The concentration of metal ions in aqueous environments significantly affects the formation of corrosion products and further metal corrosion. In this paper, the electrochemical behavior of carbon steel in the presence of Fe2+ or Fe3+ concentration in Cl and SO42− aqueous environments have been investigated using conventional electrochemical methods such as linear polarization and alternating current impedance spectroscopy. The morphology and composition of carbon steel corrosion products were studied using scanning electron microscopy and laser Raman spectroscopy. The effects of corrosion products and iron ions concentration on the corrosion of carbon steel were discussed. Corrosion products of carbon steel in aqueous environments were γ-FeOOH, γ-Fe2O3 and a small amount of α-Fe2O3. The addition of Fe2+ affected the cathode reaction of the electrode reaction, and promotes the formation of γ-FeOOH and Fe3O4. And with the increase of Fe2+ concentration in the solution, the anode process of electrode reaction was suppressed. The addition of Fe3+ promoted the formation of γ-Fe2O3 and Fe3O4. Fe3+ affected the ionization of water, causing the pH of the solution to drop. Fe3+ undergoes a redox reaction with the matrix. Addition of Fe3+ ions promoted the formation of FeOOH, an intermediate product, which reacts with the anode product Fe2+. These factors all accelerated the corrosion process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Sandberg, I.O. Wallinder, C. Leygraf, N. Le Bozec, Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment. Corros. Sci. 48, 4316–4338 (2006)

    Article  CAS  Google Scholar 

  2. R. Rangsivek, M.R. Jekel, Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Res. 39, 4153–4163 (2005)

    Article  CAS  Google Scholar 

  3. B. Hou, X. Li, X. Ma, C. Du, D. Zhang, The cost of corrosion in China. npj Mater. Degrad. 1, 4–13 (2017)

    Article  Google Scholar 

  4. W.J. LaBarre, D.R. Ownby, S.M. Lev, K.J. Rader, R.E. Casey, Attenuation of copper in runoff from copper roofing materials by two stormwater control measures. Water Res. 88, 207–215 (2016)

    Article  CAS  Google Scholar 

  5. C. Karlén, I.O. Wallindera, D. Heijerickb, C. Leygraf, Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper. Environ. Pollut. 120, 691–700 (2002)

    Article  Google Scholar 

  6. A. Belghazi, S. Bohm, J.H. Sullivan, D.A. Worsley, Zinc runoff from organically coated galvanised architectural steel. Corros. Sci. 44, 1639–1653 (2002)

    Article  CAS  Google Scholar 

  7. D.G. Heijerick, C.R. Janssen, C. Karlén, I.O. Wallinder, Bioavailability of zinc in runoff water from roofing materials. Chemosphere 47, 1073–1080 (2002)

    Article  CAS  Google Scholar 

  8. S. Jouen, B. Hannoyer, A. Barbier, J. Kasperek, M.A. Jean, Comparison of runoff rates between Cu, Ni, Sn and Zn in the first steps of exposition in a French industrial atmosphere. Mater. Chem. Phys. 85, 73–80 (2004)

    Article  CAS  Google Scholar 

  9. J. Zobrist, S.R. Müller, A. Ammannm, T.D. Bucheli, V. Mottier, M. Ochs, R. Schoenenberger, J. Eugster, M. Boller, Quality of roof runoff for groundwater infiltration. Water Res. 34, 1455–1462 (2000)

    Article  CAS  Google Scholar 

  10. M.C. Gromaire, S. Garnaud, M. Saad, G. Chebbo, Contribution of different sources to the pollution of wet weather flows in combined sewers. Water Res. 35, 521–533 (2001)

    Article  CAS  Google Scholar 

  11. G. Chebbo, M.C. Gromaire, The experimental urban catchment ‘Le Marais’ in Paris: what lessons can be learned from it? J. Hydrol. 299, 312–323 (2004)

    Article  CAS  Google Scholar 

  12. D.M. Yebra, S. Kiil, K. Dam-Johansen, Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50, 75–104 (2004)

    Article  CAS  Google Scholar 

  13. D.P. Connelly, J.W. Readman, A.H. Knap, J. Davies, Contamination of the coastal waters of Bermuda by organotins and the triazine herbicide Irgarol 1051. Mar. Pollut. Bull. 42, 409–414 (2001)

    Article  CAS  Google Scholar 

  14. K.V. Thomas, S.J. Blake, M.J. Waldock, Antifouling paint booster biocide contamination in UK marine sediments. Mar. Pollut. Bull. 40, 739–745 (2000)

    Article  CAS  Google Scholar 

  15. P. Matthiessen, J. Reed, M. Johnson, Sources and potential effects of copper and zinc concentrations in the estuarine waters of essex and suffolk, United Kingdom. Mar. Pollut. Bull. 38, 908–920 (1999)

    Article  CAS  Google Scholar 

  16. L. L Shreir, R. A. Jarman and G. T. Burstein (1994) Corrosion, 3rd Edition, Vol. 1, Metai/Environment Reactions. Butterworth-Heinemann, Oxford

  17. R.W. Revie, Uhlig’s corrosion handbook, 2nd edn. (Wiley, New York, 2000)

    Google Scholar 

  18. J.P.R. Roberge, Handbook of corrosion engineering (McGraw-Hill, New York, 2000)

    Google Scholar 

  19. P. Refait, M. Abdelmoula, J.M.R. Génin, Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corros. Sci. 40, 1547–1560 (1998)

    Article  CAS  Google Scholar 

  20. P. Refait, J.B. Memet, C. Bon, R. Sabot, J.M.R. Génin, Formation of the Fe(II)–Fe(III) hydroxysulphate green rust during marine corrosion of steel. Corros. Sci. 45, 833–845 (2004)

    Article  Google Scholar 

  21. P. Refait, M. Abdelmoula, J. Géni, R. Sabot, Green rusts in electrochemical and microbially influenced corrosion of steel. C. R. Geosci. 338, 476–487 (2006)

    Article  CAS  Google Scholar 

  22. J.M.R. Génin, G. Bourrié, F. Trolard, M. Abdelmoula, A. Jaffrezic, P. Refait, V. Maitre, B. Humbert, A. Herbillon, Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II) − Fe(III) green rusts: occurrences of the mineral in hydromorphic soils. Environ. Sci. Technol. 32, 1058–1068 (1998)

    Article  Google Scholar 

  23. S. Pineau, R. Sabot, L. Quillet, M. Jeannin, C. Caplat, I. Dupont-Morral, P. Refait, Formation of the Fe(II–III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase. Corros. Sci. 50, 1099–1111 (2008)

    Article  CAS  Google Scholar 

  24. S. Peulon, H. Antony, L. Legrand, A. Chausse, Thin layers of iron corrosion products electrochemically deposited on inert substrates: synthesis and behavior. Electrochim. Acta 49, 2891–2899 (2004)

    Article  CAS  Google Scholar 

  25. Y.H. Huang, T.C. Zhang, Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Res. 9, 1751–1760 (2005)

    Article  CAS  Google Scholar 

  26. C. Tang, Y.H. Huang, H. Zeng, Z. Zhang, Reductive removal of selenate by zero-valent iron: the roles of aqueous Fe2+ and corrosion products, and selenate removal mechanisms. Water Res. 67, 166–174 (2014)

    Article  CAS  Google Scholar 

  27. A.G. Montes, E. Mielczarski, J.A. Mielczarski, Composition and structure of iron oxidation surface layers produced in weak acidic solutions. J. Colloid Interface Sci. 289, 157–170 (2005)

    Article  CAS  Google Scholar 

  28. J.A. Mielczarski, A.G. Montes, E. Mielczarski, Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions. Appl. Catal. B- Environ. 56, 289–303 (2005)

    Article  CAS  Google Scholar 

  29. A.A. Novakova, T.S. Gendler, N.D. Manyurova, R.A. Turishcheva, A Mössbauer spectroscopy study of corrosion products formed at an iron surface in soil. Corros. Sci. 39, 1585–1594 (1997)

    Article  CAS  Google Scholar 

  30. E. Vega, P. Berger, P. Dillmann, A study of transport phenomena in the corrosion products of ferrous archaeological artefacts using 18O tracing and nuclear microprobe analysis. Nucl. Instrum. Methods Phys. Res. B. 240, 554–558 (2005)

    Article  CAS  Google Scholar 

  31. Q. Qu, C.W. Yan, W. Bai, Influence of NaCl deposition on atmospheric corrosion of A3 steel in the presence of SO2. Acta Metall. Sin. 37, 72–76 (2001)

    CAS  Google Scholar 

  32. A.M.G. Pacheco, M.G.I.B. Teixeira, M.G.S. Ferreira, Initial stages of chloride induced atmospheric corrosion of iron: an infrared spectroscopic study. Br. Corros. J. 25, 57–59 (1990)

    Article  CAS  Google Scholar 

  33. R. Avci, B.H. Davis, M.L. Wolfenden, Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corros. Sci. 76, 267–274 (2013)

    Article  CAS  Google Scholar 

  34. X. Gao, Y. Han, G. Fu, Evolution of the rust layers formed on carbon and weathering steels in environment containing chloride ions. Acta Metall. Sin. 29, 1025–1036 (2016)

    Article  CAS  Google Scholar 

  35. L. Hao, S. Zhang, J. Dong, Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion. Metall. Mater. Trans. 43, 1724–1730 (2012)

    Article  CAS  Google Scholar 

  36. W. Chen, L. Hao, J. Dong, Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere. Corros. Sci. 83, 155–163 (2014)

    Article  CAS  Google Scholar 

  37. L.J. Oblonsky, T.M. Devine, Corrosion of carbon steel in CO2-saturated brine. J. Electrochem. Soc. 144, 1252–1260 (1997)

    Article  CAS  Google Scholar 

  38. S.J. Oh, D.C. Cook, H.E. Townsend, Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 112, 59–66 (1998)

    Article  CAS  Google Scholar 

  39. D. Neff, L. Bellot-Gurlet, P. Dillmann, S. Reguer, L. Legrand, Raman imaging of ancient rust scales on archaeological iron artefacts for long-term atmospheric corrosion mechanisms study. J. Raman Spectrosc. 37, 1228–1237 (2006)

    Article  CAS  Google Scholar 

  40. D. Neff, S. Reguer, L. Bellot-Gurlet, P. Dillmann, R. Bertholon, Structural characterisation of corrosion products on archaeological iron. An integrated analytical approach to establish corrosion forms. J Raman Spectrosc. 2004(35), 739–745 (2004)

    Article  CAS  Google Scholar 

  41. K. Xiao, C. Dong, X. Li, F. Wang, Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel. J. Iron. Steel Res. Int. 15, 42–48 (2008)

    Article  CAS  Google Scholar 

  42. S.J. Oh, D.C. Cook, H.E. Townsend, Characterization of Iron oxides commonly formed as corrosion products on steel. Hyperfine Int. 112, 59–66 (1998)

    Article  CAS  Google Scholar 

  43. F. Dubois, C. Mendibide, T. Pagnier, Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance. Corros. Sci. 50, 3401–3409 (2008)

    Article  CAS  Google Scholar 

  44. M.B. Leban, T. Kosec, Characterization of corrosion products formed on mild steel in deoxygenated water by Raman spectroscopy and energy dispersive X-ray spectrometry. Eng. Fail. Anal. 79, 940–950 (2017)

    Article  CAS  Google Scholar 

  45. R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences, and uses (Wiley, Weinheim, 2003)

    Book  Google Scholar 

  46. A. Zegeye, L. Huguet, M. Abdelmoula, C. Carteret, M. Mullet, J. Frédéric, Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity. Geochim. Cosmochim. Acta 71, 5450–5462 (2007)

    Article  CAS  Google Scholar 

  47. M. Langumier, R. Sabot, R. Obame-Ndong, M. Jeannin, S. Sablé, Ph Refait, Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria. Corros. Sci. 51, 2694–2702 (2009)

    Article  CAS  Google Scholar 

  48. P. Refait, D.D. Nguyena, M. Jeannin, S. Sable, M. Langumier, R. Sabot, Electrochemical formation of green rusts in deaerated seawater-like solutions. Electrochim. Acta 56, 6481–6488 (2011)

    Article  CAS  Google Scholar 

  49. X. Zhang, K. Xiao, C. Dong, J. Wu, X. Li, Y. Huang, In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl and SO42−. Eng. Fail. Anal. 18, 1981–1989 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0304602) the National Basic Research Program of China (973 Program, No. 2014CB643300), and the National Environmental Corrosion Platform (NECP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kui Xiao or Chaofang Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K., Li, Z., Song, J. et al. Effect of Concentrations of Fe2+ and Fe3+ on the Corrosion Behavior of Carbon Steel in Cl and SO42− Aqueous Environments. Met. Mater. Int. 27, 2623–2633 (2021). https://doi.org/10.1007/s12540-019-00590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00590-y

Keywords

Navigation