Skip to main content
Log in

Inactivation of Bacteria during Stimulation of Sensitizers with High-Power Nanosecond Laser Pulses

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

AbstractThe results of a study of photoinactivation of bacteria during stimulation of sensitizers with nanosecond laser pulses with a power density within 1–30 MW/cm2 are presented. The irreversible damage to living cells by shock waves developed during the formation and collapse of vapor bubbles in locally heated microregions of the medium is discussed. The local heating of the medium occurred due to heat release during nonradiative relaxation of high electronic states of sensitizer molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. Kashef, Y.-Y. Huang, and M. R. Hamblin, Nanophotonics 6 (5), 853 (2017).

    Article  Google Scholar 

  2. R. Ackroyd, C. Kelty, N. Brown, and M. Reed, Photochem. Photobiol. 74, 656 (2001).

    Article  Google Scholar 

  3. M. R. Hamblin, Curr. Opin. Microbiol. 33, 67 (2016).

    Article  Google Scholar 

  4. F. F. Sperandio, Y.-Y. Huang, and M. R. Hamblin, Recent Pat. Antiinfect. Drug Discov. 8, 108 (2013).

    Article  Google Scholar 

  5. K. Szocs, F. Gabor, G. Csik, and J. Fidy, J. Photochem. Photobiol. B 50, 8 (1999).

    Article  Google Scholar 

  6. I. G. Tiganova, E. A. Makarova, G. A. Meerovich, et al., Biomed. Photonics 6 (4), 27 (2017).

    Article  Google Scholar 

  7. Z. Luksiene, Medicina 39, 1137 (2003).

    Google Scholar 

  8. M. Ochsner, J. Photochem. Photobiol. B 39, 1 (1997).

    Article  Google Scholar 

  9. A. A. Krasnovsky, Jr., Biochemistry 72 (10), 1065 (2007).

    Google Scholar 

  10. J. Chena, Th. C. Cesarioc, and M. Peter, Proc. Natl. Acad. Sci. U. S. A. 111 (1), 33 (2014).

    Article  ADS  Google Scholar 

  11. G. Ara, R. Anderson, K. Mandel, and A. R. Oseroff, Photochem. Photobiol. 47, 37 (1988).

    Google Scholar 

  12. J. A. Parrish, R. R. Anderson, T. Harrist, et al., J. Invest. Dermatol. 80, 75 (1983).

    Article  Google Scholar 

  13. R. R. Anderson, R. J. Margolis, S. Watenabe, et al., J. Invest. Dermatol. 93, 28 (1989).

    Article  Google Scholar 

  14. J. Greenwald, S. Rosen, R. R. Anderson, et al., J. I-nvest. Dermatol. 77 (3), 305 (1981).

    Article  Google Scholar 

  15. J. G. Morelli, O. T. Tan, J. Garden, et al., Lasers Surg. Med. 6 (1), 94 (1986).

    Article  Google Scholar 

  16. M. Soncin, A. Busetti, F. Fusi, et al., Photochem. Photobiol. 69 (6), 708 (1999).

    Article  Google Scholar 

  17. E. Goldman and L. H. Green in Practical Handbook of Microbiology, 2nd ed. (Boca Raton, FL: CRC Press, 2008), p. 864.

    Book  Google Scholar 

  18. V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, Laser Phys. 6 (10), 1188 (2000).

    Google Scholar 

  19. G. Jori, C. Fabris, M. Soncin, et al., Lasers Surg. Med. 38 (5), 468 (2006).

    Article  Google Scholar 

  20. S. D. Zakharov and A. V. Ivanov, Kvant. Elektron. 3 (29), 192 (1999).

    Google Scholar 

  21. H. Noguchi, J. Exp. Med. 8 (2), 252 (1906).

    Article  Google Scholar 

  22. A. T. Ishemgulov, S. N. Letuta, S. N. Pashkevich, et al., Optika Spektrosk. 123 (5), 818 (2017).

    ADS  Google Scholar 

  23. S. N. Letuta, S. N. Pashkevich, A. T. Ishemgulov, et al., J. Photochem. Photobiol. B 163, 232 (2016).

    Article  Google Scholar 

  24. S. N. Letuta, A. T. Ishemgulov, U. G. Letuta, and S. N. Pashkevich, Biophysics (Moscow) 63 (5), 798 (2018).

    Article  Google Scholar 

  25. S. Wood, D. Metcalf, D. Devine and C. Robinson, J. Antimicrob. Chemother. 57, 680 (2006).

    Article  Google Scholar 

  26. R. D. Rossoni, J. C. Junqueira, E. L. S. Santos, et al., Lasers Med. Sci. 25, 581 (2010).

    Article  Google Scholar 

  27. S. N. Letuta, Doctoral Dissertation in Mathematics and Physics (Moscow, 2003).

  28. V. V. Ryl’kov and E. A. Cheshev, Optika Spektrosk. 63 (5), 1030 (1987).

    Google Scholar 

  29. A. V. Aristov and V. S. Shevandin, Optika Spektrosk. 44 (3), 473 (1978).

    Google Scholar 

  30. V. V. Ryl’kov and E. A. Cheshev, Dokl. Akad. Nauk SSSR, 281 (3), 648 (1985).

    Google Scholar 

  31. V. L. Ermolaev and V. A. Lyubimtsev, Optika Spektrosk. 56 (6), 1026 (1984).

    Google Scholar 

  32. M. G. Kucherenko, Kinetics of Nonlinear Photoprocesses in Condensed Molecural Systems (Orenburg State Univ., Orenburg, 1997) [in Russian].

    Google Scholar 

  33. E. A. Annenkova, S. A Tsysar’ and O. A. Sapozhnikov, Akust. Zh. 62 (2), 167 (2016).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 3.6358.2017/BCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Pashkevich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Panyushkina

Abbreviations: PS, photosensitizer; HEES, highly excited electronic states; CFU, colony-forming unit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letuta, S.N., Letuta, U.G. & Pashkevich, S.N. Inactivation of Bacteria during Stimulation of Sensitizers with High-Power Nanosecond Laser Pulses. BIOPHYSICS 64, 576–582 (2019). https://doi.org/10.1134/S0006350919040092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919040092

Navigation