Skip to main content
Log in

Physicochemical Patterns of the Delignification of Deciduous and Coniferous Wood during Ozonation

  • IN COMMEMORATION OF ACADEMICIAN V.V. LUNIN: SELECTED CONTRIBUTIONS FROM HIS STUDENTS AND COLLEAGUES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Results are presented from a comparative study of the efficiency of ozone use for delignification of deciduous (aspen) and coniferous (pine) wood. The physicochemical properties of lignocellulosic materials (LCMs) obtained by ozonizing wood are investigated via IR spectroscopy and thermal analysis. The content of lignin in LCMs is determined. It is shown that the delignification of wood is accompanied by the destruction of hemicelluloses. The composition of products of ozonation is determined using HPLC. It is found that the destruction of lignin proceeds both via reactions with the participation of molecular ozone (ozonolysis) and free radical processes. The optimum consumption of ozone in wood delignification is ~2 mol O3/mol phenylpropane unit (PPU) of lignin. It is found that the efficiency of delignification is lower for pine than for aspen, due possibly to the difference between the porous structures of deciduous and coniferous wood. It is shown that ozone pretreatment greatly increases the yield of reducing sugars in reactions of the enzymatic hydrolysis of wood substrates. It is concluded that as a raw material, deciduous wood is more promising than coniferous wood when using delignification with ozone in obtaining sugars by enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. G. Bogolitsyn, A. N. Pryakhin, and V. V. Lunin, Physical Chemistry of Lignin, Ed. by K. G. Bogolitsyn and V. V. Lunin (Arkhang. Gos. Univ., Arkhangel’sk, 2009) [in Russian].

  2. V. A. Demin, V. V. Shereshovets, and Yu. B. Monakov, Russ. Chem. Rev. 68, 937 (1999).

    Article  CAS  Google Scholar 

  3. C. Li, L. Wang, Z. Chen, et al., Bioresour. Technol. 183, 240 (2015).

    Article  CAS  Google Scholar 

  4. R. Travaini, J. Martin-Juarez, A. Lorenzo-Hernando, and S. Bolado-Rodriges, Bioresour. Technol. 199, 2 (2016).

    Article  CAS  Google Scholar 

  5. O. M. Perrone, F. Colombari, J. Rossi, et al., Bioresour. Technol. 218, 69 (2016).

    Article  CAS  Google Scholar 

  6. M. T. García-Cubero, L. G. Palacín, G. González-Benito, et al., Bioresour. Technol. 107, 229 (2012).

    Article  Google Scholar 

  7. D. Fengel’ and G. Vegener, Wood: Chemistry, Ultrastructure, Reactions (Lesnaya Promyshl., Moscow, 1988) [in Russian].

    Google Scholar 

  8. V. G. Samoilovich, S. N. Tkachenko, I. S. Tkachenko, and V. V. Lunin, Theory and Practice of Obtaining and Using Ozone, Ed. by V. V. Lunin (Mosk. Gos. Univ., Moscow, 2016) [in Russian].

    Google Scholar 

  9. N. A. Mamleev, S. A. Autlov, N. G. Bazarnova, and V. V. Lunin, Pure Appl. Chem. 81, 2081 (2009).

    Article  Google Scholar 

  10. S. A. Autlov, N. G. Bazarnova, and V. V. Lunin, Russ. J. Bioorg. Chem. 42, 694 (2016).

    Article  Google Scholar 

  11. N. A. Mamleeva, A. N. Kharlanov, D. G. Chukhchin, et al., Khim. Rastit. Syr’ya, No. 1, 85 (2019).

    Google Scholar 

  12. N. A. Mamleeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 2550 (2019).

    Article  CAS  Google Scholar 

  13. E. M. Benko, D. G. Chukhchin, A. V. Malkov, I. V. Vydrina, E. V. Novozhilov, and V. V. Lunin, Russ. J. Phys. Chem. A 94, 1149 (2020).

    Article  CAS  Google Scholar 

  14. N. A. Mamleeva, A. V. Shumyantsev, and V. V. Lunin, Russ. J. Phys. Chem. A 94, 526 (2020).

    Article  CAS  Google Scholar 

  15. N. A. Mamleeva, A. N. Kharlanov, and A. V. Shumyantsev, Russ. J. Phys. Chem. A (in press).

  16. E. V. Benko, D. G. Chukhchin, and V. V. Lunin, Holzforschung 74, 1157 (2020). https://doi.org/10.1515/hf-2019-0168

  17. N. A. Mamleeva, A. L. Kustov, and V. V. Lunin, Russ. J. Phys. Chem. A 92, 1675 (2018).

    Article  CAS  Google Scholar 

  18. E. M. Ben’ko, D. G. Chukhchin, N. A. Mamleeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 94, 1535 (2020).

    Article  Google Scholar 

  19. N. A. Mamleeva, N. A. Babaeva, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 28 (2019).

    Article  CAS  Google Scholar 

  20. E. M. Ben’ko and V. V. Lunin, Khim. Rastit. Syr’ya, No. 4, 305 (2019).

    Google Scholar 

  21. E. M. Ben’ko and V. V. Lunin, Russ. J. Phys. Chem. A 94, 1943 (2020).

    Article  Google Scholar 

  22. Fr. Aldaeus and E. Sjoholm, COST Action FP0901, Version 3, Innventia Report No. IR 108 (2011).

  23. E. Y. Kushnir, S. A. Autlov, and N. G. Bazarnova, Russ. J. Bioorg. Chem. 41, 713 (2015).

    Article  CAS  Google Scholar 

  24. M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, Vibr. Spectrosc. 36, 23 (2004).

    Article  CAS  Google Scholar 

  25. S. R. Loskutov, O. A. Shapchenkova, and A. A. Aniskina, Sib. Lesn. Zh., No. 6, 17 (2015).

  26. J. Zhang, L. Feng, D. Wang, et al., Biores. Technol. 153, 379 (2014).

    Article  CAS  Google Scholar 

  27. Z. Jin, K. S. Katsumata, T. B. T. Lam, and K. Iiyama, Biopolymers 83, 103 (2006).

    Article  CAS  Google Scholar 

  28. P. S. Bailey, Ozonation in Organic Chemistry, Vol. 2: Nonolefinic Compounds (Academic, New York, 1982), p. 31.

  29. L. Schöne and H. Herrmann, Atmos. Chem. Phys. 14, 4503 (2014).

    Article  Google Scholar 

  30. S. D. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Kinetics and Mechanism) (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  31. E. M. Ben’ko, O. R. Manisova, and V. V. Lunin, Russ. J. Phys. Chem. A 91, 1190 (2017).

    Article  Google Scholar 

  32. C. Olkkonen, Y. Tylli, I. Forsskåhl, et al., Holzforschung 54, 397 (2000).

    Article  CAS  Google Scholar 

  33. M. Ragnar, T. Eriksson, and T. Reitberger, Holzforschung 53, 292 (1999).

    Article  CAS  Google Scholar 

  34. F. Bertaud, J. P. Croué, and B. Legube, Ozone: Sci. Eng. 23, 139 (2001).

    Article  CAS  Google Scholar 

  35. S. Staehelin and J. Hoigne, Environ. Sci. Technol. 16, 666 (1982).

    Article  Google Scholar 

  36. H. Kaneko, S. Hosoya, K. Iiyama, and J. Nakano, J. Wood Chem. Technol. 3, 399 (1983). https://doi.org/10.1080/02773818308085171

    Article  CAS  Google Scholar 

  37. M. B. Roncero, J. F. Colom, and T. Vidal, Carbohydrate Polymers 51, 411 (2003).

  38. B. Ferron, J. P. Croué, and M. Dore, Ozone: Science and Engineering 17, 687 (1995). https://doi.org/10.1080/01919512.1995.10555779

  39. A. G. Khudoshin, A. N. Mitrofanova, and V. V. Lunin, Russ. Chem. Bull. 57, 283 (2008).

    Article  CAS  Google Scholar 

  40. R. B. Hoadley, Understanding Wood: A Craftsman’s Guide to Wood Technology (The Taunton Press, 2000).

    Google Scholar 

  41. V. I. Azarov, Chemistry of Wood and Synthetic Polymers (St. Petersburg, 1999) [in Russian].

    Google Scholar 

  42. M. Kobayashi, T. Asano, M. Kajiyama, and B. Tomita, J. Wood Sci. 51, 348 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the shared resource center of Moscow State University’s Faculty of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mamleeva.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamleeva, N.A., Ben’ko, E.M., Kharlanov, A.N. et al. Physicochemical Patterns of the Delignification of Deciduous and Coniferous Wood during Ozonation. Russ. J. Phys. Chem. 95, 577–585 (2021). https://doi.org/10.1134/S0036024421030146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421030146

Keywords:

Navigation