Skip to main content
Log in

Surface Structure of Pt–Ni–Cr/C Catalysts

  • IN COMMEMORATION OF ACADEMICIAN V.V. LUNIN: SELECTED CONTRIBUTIONS FROM HIS STUDENTS AND COLLEAGUES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The composition and structure of the surface phases of catalysts based on Pt, Ni, and Cr (platinum, bi- and trimetallic) supported on a Sibunit carrier are studied via TEM and EDS. The structure of the catalysts before and after reductive hydrogenation are compared. It is found that the metal in the Pt/C system is in a highly dispersed state, mainly in an oxidized form. In bimetallic and ternary catalysts, the surface contains metallic and oxide components; on the surface of Pt–Ni catalyst, the metal phase is more pronounced than with Ni–Cr and Pt–Ni–Cr. Nickel-based catalysts contain large metal particles (up to 30 nm). After reductive hydrogenation, an increase in dispersion and a reduction in the crystallinity of metal particles is observed in all of the studied systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. M. Kustov, A. N. Kalenchuk, V. I. Bogdan, Russ. Chem. Rev. 89, 897 (2020).

    Article  CAS  Google Scholar 

  2. N. A. Kalenchuk, V. I. Bogdan, S. F. Dunaev, and L. M. Kustov, Fuel 280, 118625 (2020).

    Article  CAS  Google Scholar 

  3. V. I. Bogdan, A. E. Koklin, A. N. Kalenchuk, and L. M. Kustov, Mendeleev Commun. 300, 462 (2020).

    Article  Google Scholar 

  4. A. Stanislaus, and B. H. Cooper, Catal. Rev.-Sci. Eng. 36, 75 (1994).

    Article  CAS  Google Scholar 

  5. A. N. Kalenchuk, V. I. Bogdan, S. F. Dunaev, and L. Kustov, Fuel Process. Technol. 169, 94 (2018).

    Article  CAS  Google Scholar 

  6. N. Kariya, A. Fukuoka, M. Ichikawa, Appl. Catal., A 233, 91 (2002).

  7. W. Yuan, K. Scott and H. Cheng, J. Power Sources 163, 232 (2006).

    Google Scholar 

  8. H. R. Colon-Mercado and B. N. Popov, J. Power Sources 155, 253 (2006).

  9. A. A. Shukla, P. V. Gosavi, J. V. Pande, et al., Int. J. Hydrogen Energy 35, 4020 (2010).

    Article  CAS  Google Scholar 

  10. A. L. Tarasov, O. P. Tkachenko, and L. M. Kustov, Catal. Lett. 148, 1472 (2018).

    Article  CAS  Google Scholar 

  11. K. Rouibah, A. Barama, R. Benrabaa, et al., Int. J. Hydrogen Energy 30, 1 (2017).

    Google Scholar 

  12. P. Mani, R. Srivastava, and P. Strasser, J. Power Sources 196, 666 (2011).

    Article  CAS  Google Scholar 

  13. A. N. Kalenchuk, V. I. Bogdan, S. F. Dunaev, and L. M. Kustov, Int. J. Hydrogen Energy 43, 6191 (2018).

    Article  CAS  Google Scholar 

  14. Open Crystallographic Database. http://crystallography.net/cod/.

Download references

ACKNOWLEDGMENTS

This work was a development of the ideas of Valery Vasil’evich Lunin, Academician of the Russian Academy of Sciences, in the field of physical chemistry and heterogeneous catalysis. The authors are grateful to Prof. Lunin, a fine gentleman, scientist, and teacher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bogdan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdan, T.V., Kalenchuk, A.N., Maksimov, S.V. et al. Surface Structure of Pt–Ni–Cr/C Catalysts. Russ. J. Phys. Chem. 95, 523–529 (2021). https://doi.org/10.1134/S0036024421030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421030067

Keywords:

Navigation