Skip to main content
Log in

The Influence of Fe Substitution in GdFeO3 on Redox and Catalytic Properties

  • XVI INTERNATIONAL CONFERENCE ON THERMAL ANALYSIS AND CALORIMETRY IN RUSSIA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

GdMn1 – xFexO3 (x = 0, 0.2, 0.5, 0.8, 1) perovskite oxides were prepared by a sol–gel method. The catalytic activity in dry reforming of methane was examined. XRD, BET, TPR, and TGA techniques have been used to characterize structural properties, reducibility and carbonization of the catalyst. The H2-TPR data show that an increase in the Mn content in the series of GdMn1 – xFexO3 compounds (x = 0, 0.2, 0.5, 0.8, 1) leads to a decrease in the reduction temperature. The study of the catalytic properties in the reaction of dry reforming of methane (DRM) showed that the catalytic activity of the studied compounds depends on the Fe content and increases in the series: GdMnO3 < GdMn0.8Fe0.2O3 < GdMn0.2Fe0.8O3 < GdFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. Zhao, B. Yan, S. Yao, et al., J. Catal. 358, 168 (2018). https://doi.org/10.1016/j.jcat.2017.12.012

    Article  CAS  Google Scholar 

  2. P. K. Yadav and T. Das, Int. J. Hydrogen Energy 44, 1659 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.108

    Article  CAS  Google Scholar 

  3. E. A. Filonova, A. N. Demina, and A. N. Petrov, Russ. J. Phys. Chem. A 81, 1591 (2007). https://doi.org/10.1134/S0036024407100081

    Article  CAS  Google Scholar 

  4. Y. H. Wu, L. T. Luo, and W. Liu, Russ. J. Phys. Chem. A 84, 405 (2010). https://doi.org/10.1134/S0036024410030118

    Article  CAS  Google Scholar 

  5. L. V. Yafarova, I. V. Chislova, I. A. Zvereva, et al., J. Sol-Gel Sci. Technol. 92, 264 (2019). https://doi.org/10.1007/s10971-019-05013-3

    Article  CAS  Google Scholar 

  6. I. V. Chislova, A. A. Matveeva, A. V. Volkova, et al., J. Glass Phys. Chem. 37, 653 (2011). https://doi.org/10.1134/S1087659611060071

    Article  CAS  Google Scholar 

  7. N. L. Ross, J. Zhao, and R. J. Angel, J. Solid State Chem. 177, 3768 (2004). https://doi.org/10.1016/j.jssc.2004.07.002

    Article  CAS  Google Scholar 

  8. J. A. C. Vasquez, D. A. L. Téllez, C. A. Collazos, and J. R. Rojas, J. Phys.: Conf. Ser. 687 (1) (2016). https://doi.org/10.1088/1742-6596/687/1/012087

  9. G. J. McCarthy, P. V. Gallagher, and C. Sipe, Mater. Res. 8, 1277 (1973).

    CAS  Google Scholar 

  10. M. W. Lufaso and P. M. Woodward, Acta Crystallogr., B 60, 10 (2004). https://doi.org/10.1107/S0108768103026661

    Article  CAS  Google Scholar 

  11. L. Kepinski and P. Kraszkiewicz, Colloids Surf., A 124, 742 (2020). https://doi.org/10.1016/j.colsurfa.2020.124742

    Article  CAS  Google Scholar 

  12. S. Zhao, L. Wang, Y. Wang, et al., J. Phys. Chem. Solids 116, 43 (2018). https://doi.org/10.1016/j.jpcs.2017.12.057

    Article  CAS  Google Scholar 

  13. D. Pakhare and J. Spivey, Chem. Soc. Rev. 43, 7813 (2014). https://doi.org/10.1039/c3cs60395d

    Article  CAS  PubMed  Google Scholar 

  14. T. F. Sheshko and Y. M. Serov, Russ. J. Phys. Chem. A 86, 283 (2012). https://doi.org/10.1134/S0036024412020264

    Article  CAS  Google Scholar 

  15. S. Z. Roginskii, M. I. Yanovskii, and A. D. Berman, Fundamentals of the Application of Chromatography in Catalysis (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  16. M. Shah, S. Das, A. K. Nayak, et al., Appl. Catal. A 556, 137 (2018). https://doi.org/10.1016/j.apcata.2018.01.007

    Article  CAS  Google Scholar 

  17. C. Ruocco, B. de Caprariis, V. Palma, et al., J. CO2 Util. 30, 222 (2019). https://doi.org/10.1016/j.jcou.2019.02.009

  18. H. R. Gurav, S. Dama, V. Samuel, et al., J. CO2 Util. 20, 357 (2017). https://doi.org/10.1016/j.jcou.2017.06.014

Download references

ACKNOWLEDGMENTS

The publication has been prepared with the support of the “RUDN University Program 5-100.” The research was performed at the Center of Thermal Analysis and Calorimetry, Research Centre for X‑ray Diffraction Studies and Center for Studies in Surface Science of Research Park of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Yafarova.

Ethics declarations

FUNDING

This work was supported by the scholarship and grant of the President of the Russian Federation (nos. SP-1164.2019.1 and MK-480.2020.3).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yafarova, L.V., Silyukov, O.I., Kryuchkova, T.A. et al. The Influence of Fe Substitution in GdFeO3 on Redox and Catalytic Properties. Russ. J. Phys. Chem. 94, 2679–2684 (2020). https://doi.org/10.1134/S0036024420130324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420130324

Keywords:

Navigation