Skip to main content
Log in

Carbon Monoxide Hydrogenation over Gd(Fe/Mn)O3 Perovskite-Type Catalysts

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Catalytic properties of GdFeO3 and GdMnO3 perovskite-type oxides in CO hydrogenation processes is conducted. Complex oxides Gd(Fe/Mn)O3 are synthesized by the sol–gel technology and characterized by X-ray diffraction, temperature-programmed reduction, and scanning electron microscopy. It is found that the iron-containing catalyst has fairly high catalytic characteristics; therefore, it provides lower temperatures of carbon monoxide hydrogenation. The presence of manganese in the catalyst leads to an increase in light olefin selectivity compared with the sample containing iron at the B-site. It is assumed that gadolinium cations are responsible for dissociative chemisorption, while iron and manganese cations are responsible for the formation of atomic hydrogen. The two catalysts exhibit resistance to carbon deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Ao, G. H. Pham, V. Sage, and V. Pareek, J. Mol. Catal. A: Chem. 416, 96 (2016).

    Article  CAS  Google Scholar 

  2. N. T. Thao and L. T. Son, J. Sci.: Adv. Mater. Devices 1, 337 (2016).

    Google Scholar 

  3. L. Bedel, A. Roger, J. Rehspringer, Y. Zimmermann, and A. Kiennemann, J. Catal. 235, 279 (2005).

    Article  CAS  Google Scholar 

  4. L. Bedel, A. C. Roger, J. L. Rehspringer, and A. Kiennemann, Stud. Surf. Sci. Catal. 147, 319 (2004).

    Article  CAS  Google Scholar 

  5. N. Escalona, S. Fuentealba, and G. Pecchi, Appl. Catal., A 381, 253 (2010).

  6. T. F. Sheshko, T. A. Kryuchkova, Yu. M. Serov, I. V. Chislova, and I. A. Zvereva, Cat. Ind. 9 (2), 162 (2017).

    Article  Google Scholar 

  7. A. Bakhtyari, M. A. Makarem, and M. R. Rahimpour, in Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen, Ed. by F. Dalena, A. Basile, and C. Rossi (Woodhead Publishing, Sawston, 2017), pp. 87–148.

  8. S. Golestan, A. A. Mirzaei, and H. Atashi, Int. J. Hydrogen Energy 42, 9816 (2017).

    Article  CAS  Google Scholar 

  9. M. Arsalanfar, A. A. Mirzaei, H. R. Bozorgzadeh, A. Samimi, and R. Ghobadi, J. Ind. Eng. Chem 20, 1313 (2014).

    Article  CAS  Google Scholar 

  10. J. Zhang, X. Wang, L. Ma, X. Yu, Q. Ma, S. Fan, and T. Zhao, J. Fuel Chem. Tech. 45 (12), 1489 (2017).

    CAS  Google Scholar 

  11. J. Zhang, L. Ma, S. Fan, T.-S. Zhao, and Y. Sun, Fuel 109, 116 (2013).

    Article  CAS  Google Scholar 

  12. M. Zhao, Y. Cui, J. Sun, and Q. Zhang, Catal. Today 316, 142 (2018).

    Article  CAS  Google Scholar 

  13. I. V. Chislova, A. A. Matveeva, A. V. Volkova, and I. A. Zvereva, Glass Phys. Chem. 37 (6), 653 (2011).

    Article  CAS  Google Scholar 

  14. L. V. Yafarova, I. V. Chislova, I. A. Zvereva, T. A. Kryuchkova, V. V. Kost, and T. F. Sheshko, J. Sol–Gel Sci. Technol. (2019). https://doi.org/10.1007/s10971-019-05013-3

    Article  CAS  Google Scholar 

  15. A. L. Lapidus and A. Yu. Krylova, Ross. Khim. Zh. 44 (1), 43 (2000).

    CAS  Google Scholar 

  16. P. C. Keith, Oil Gas J. 45, 102 (1946).

    Google Scholar 

  17. T. F. Sheshko and Yu. M. Serov, Russ. J. Phys. Chem. A 86 (2), 283 (2012).

    Article  CAS  Google Scholar 

  18. J. Wenter, M. Kaminsky, G. L. Geoffroy, and M. A. Vannice, J. Catal. 105, 155 (1987).

    Article  Google Scholar 

  19. J. J. Venter and M. A. Vannice, Catal. Lett. 7, 219 (1990).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The physicochemical studies were conducted using the equipment of the Thermogravimetric and Calorimetric Research Center, the Center for X-ray Diffraction Studies, the Center for Physical Methods of Surface Investigation, and the Interdisciplinary Resource Center for Nanotechnology of the St. Petersburg State University Research Park.

Funding

This work was supported by Russian Foundation for Basic Research, project no. 17-03-00647.Preparation of the publication was supported by the RUDN University Program 5-100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Sheshko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

ADDITIONAL INFORMATION

T.F. Sheshko, ORCID: https://orcid.org/0000-0003-4176-4085

E.B. Markova, ORCID: https://orcid.org/0000-0003-2735-2893

A.A. Sharaeva, ORCID: https://orcid.org/0000-0001-6465-7368

T.A. Kryuchkova, ORCID: https://orcid.org/0000-0001-6810-9756

I.A. Zvereva, ORCID: http://orcid.org/0000-0002-6898-3897

I.V. Chislova, ORCID: http://orcid.org/0000-0001-5212-5014

L.V. Yafarova, ORCID: http://orcid.org/0000-0001-7572-2209

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheshko, T.F., Markova, E.B., Sharaeva, A.A. et al. Carbon Monoxide Hydrogenation over Gd(Fe/Mn)O3 Perovskite-Type Catalysts. Pet. Chem. 59, 1307–1313 (2019). https://doi.org/10.1134/S0965544119120107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119120107

Keywords:

Navigation