Skip to main content
Log in

Influence of DETA on the Tin Promotion of Mesoporous Sn–Ti Catalysts for Cyclohexanone Oxidation by Molecular Oxygen

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A series of Sn–Ti(n)–DETA catalysts were prepared by a simple EISA method assisted by post-treatment of diethylenetriamine (DETA) solution, and several characterization techniques, including XRD, N2 sorption, Raman, ICP, UV–Vis DRS, pyridine-adsorbed IR, SEM, and TEM, were adopted to investigate their physical and chemical properties. The influence of DETA on the tin incorporation promotion of mesoporous Sn–Ti catalysts and their catalytic performance in the B–V oxidation of cyclohexanone by molecular oxygen were also studied. The mesopores with higher surface area and larger pore volume can be kept well when the weight percent of tetrahedrally incorporated tin species would be promoted up to 21% owing to the stronger alkalinity and more primary amine of the DETA molecule resulting in higher Lewis acidity. The cyclohexanone conversion of 95.5% and caprolactone selectivity of 96.8%, respectively, over Sn–Ti(21)–DETA catalyst were obtained, and it shows good catalytic stability even after reused for 5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. A. Michelin, P. Sgarbossa, A. Scarso, et al., Coord. Chem. Rev. 254, 646 (2010).

    Article  CAS  Google Scholar 

  2. G. D. García-Olaiz, K. A. Montoya-Villegas, A. Licea-Claverie, et al., React. Funct. Polym. 88, 16 (2015).

    Article  Google Scholar 

  3. M. Markiton, A. Szelwicka, S. Boncel, et al., Appl. Catal. A 556, 81 (2018). https://doi.org/S0926860X18301005.

  4. X. Yang, Y. Jiang, Y. Li, et al., Microporous Mesoporous Mater. 253, 40 (2017).

    Article  CAS  Google Scholar 

  5. W. Zheng, R. Tan, X. Luo, et al., Catal. Lett. 146, 281 (2016).

    Article  CAS  Google Scholar 

  6. K. Kamata, K. Yonehara, Y. Nakagawa, et al., Nat. Chem. 2, 478 (2010).

    Article  CAS  Google Scholar 

  7. B. Dutta, S. Jana, S. Bhunia, et al., Appl. Catal. A 382, 90 (2010).

    Article  CAS  Google Scholar 

  8. Z. Shi, C. Zhang, C. Tang, et al., Chem. Soc. Rev. 41, 3381 (2012).

    Article  CAS  Google Scholar 

  9. S. Rahmana, N. Enjamuria, R. Gomes, et al., Appl. Catal. A 505, 515 (2015).

    Article  Google Scholar 

  10. R. Kumar, P. P. Das, A. S. Alfatesh, et al., Catal. Commun. 74, 80 (2016).

    Article  CAS  Google Scholar 

  11. S. Y. Chen, X. T. Zhou, and H. B. Ji, Catal. Today 264, 191 (2015).

    Article  Google Scholar 

  12. J. P. Mehta, D. K. Parmar, D. R. Godhani, et al., J. Mol. Catal. A 415, 37 (2016). https://doi.org/S138111691630187X

  13. M. Uyanik, K. Ishihara, ACS Catal. 3, 513 (2013).

    Article  CAS  Google Scholar 

  14. Y. Wang, T. Yokoi, R. Otomo, et al., Appl. Catal. A 490, 93 (2015).

    Article  CAS  Google Scholar 

  15. M. Paul, N. Pal, J. Mondal, et al., Chem. Eng. Sci. 71, 564 (2012).

    Article  CAS  Google Scholar 

  16. C. S. Reddy and G. P. Reddy, Cheminform 127, 193 (2006).

    Google Scholar 

  17. A. Corma, L. T. Nemeth, M. Renz, et al., Nature (London, U. K.) 412, 423 (2001).

    Article  CAS  Google Scholar 

  18. A. Corma, M. T. Navarro, L. Nemeth, et al., Cheminform 33, 2190 (2002).

    Google Scholar 

  19. T. Chen, B. Wang, Y. Li, et al., J. Porous Mater. 22, 949 (2015).

    Article  CAS  Google Scholar 

  20. R. Maheswari, M. P. Pachamuthu, A. Ramanathan, et al., Ind. Eng. Chem. Res. 53, 18833 (2014).

    Article  CAS  Google Scholar 

  21. Y. Yang, D. Guan, Y. Liu, et al., Catal. Lett. 149, 1111 (2019).

    Article  CAS  Google Scholar 

  22. Zh. Zhou, P. Yu, J. Qin, W. Wu, L. Xu, Zh. Gu, and X. Liu, J. Porous Mater. 23, 239 (2016).

    Article  CAS  Google Scholar 

  23. Z. Zhou, Y. Yu, P. Yu, et al., React. Kinet., Mechanisms Catal. 120, 295 (2017).

    Article  CAS  Google Scholar 

  24. Z. Liu, Z. Zhou, J. Qin, et al., Chem. Sel. 3, 6434 (2018).

    CAS  Google Scholar 

  25. Z. Zhou, J. Wang, J. Qin, et al., J. Porous Mater. (2017).

  26. W. Zhou, F. Sun, K. Pan, et al., Adv. Funct. Mater. 21, 1922 (2011).

    Article  CAS  Google Scholar 

  27. W. Zhou, W. Li, J. Q. Wang, et al., J. Am. Chem. Soc. 136, 9280 (2014).

    Article  CAS  Google Scholar 

  28. J. K. Yang, H. L. Zhao, Y. Zhu, et al., Adv. Mater. Res., 634 (2013).

  29. C. Li, G. Zeng, Y. Zhou, et al., Appl. Surf. Sci. 342, 174 (2015).

    Article  Google Scholar 

  30. R. T. Ako, P. Ekanayake, D. J. Young, et al., Appl. Surf. Sci. 351, 950 (2015).

    Article  CAS  Google Scholar 

  31. V. Swamy, A. Y. Kuznetsov, L. S. Dubrovinsky, et al., Phys. Rev. Lett. 103, 075505 (2009).

    Article  Google Scholar 

  32. Z. Liu, Z. Zhou, J. Qin, et al., Chem. Sel. 3, 6434 (2018).

    CAS  Google Scholar 

  33. Q. Zhang, H. Yang, and W. Yan, RSC Adv. 4, 56938 (2014).

  34. Y. C. Wu and L. S. Ju, J. Alloys Compd. 604, 164 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwei Zhou or Wenliang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanqing Li, Zhou, Z., Qin, J. et al. Influence of DETA on the Tin Promotion of Mesoporous Sn–Ti Catalysts for Cyclohexanone Oxidation by Molecular Oxygen. Russ. J. Phys. Chem. 94, 2226–2232 (2020). https://doi.org/10.1134/S0036024420110230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420110230

Keywords:

Navigation