Skip to main content
Log in

First-Principles Study of Adsorption of XCN (X = F, Cl, and Br) on Surfaces of Polyaniline

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Cyanogen halides are a group of highly toxic and colorless compounds. Their presence in the environment and direct contact with these compounds can be dangerous. So finding a reliable and accurate sensor for these compounds can be very beneficial. In this study, the adsorption of cyanogen halides (XCN, X = F, Cl, and Br) on 2PANI was investigated, using UB3LYP/6-31G*(d) as a DFT method. The binding energies between 2PANI and XCN were calculated. Also, Mulliken charge transfer (QMulliken), molecular electrostatic potential (MEP) and the global indices of activities were calculated and orbital analyses were performed. Based on our results, it can be found that at proper configuration the FCN, ClCN, and BrCN molecules can be adsorbed on 2PANI with adsorption energies (Eads) of –9.975, –11.025, and –26.510 kJ/mol, respectively. As a result, 2PANI can be used as a useful, portable, and cheap sensor for cyanogen halides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. Peng, J. Jin, and G. Z. Chen, Elect. Acta 53, 525 (2007).

    Article  CAS  Google Scholar 

  2. M. Ates, Mater. Sci. Eng. C 33, 1853 (2013).

    Article  CAS  Google Scholar 

  3. M. Ates, Prog. Org. Coat. 71, 1 (2011).

    Article  CAS  Google Scholar 

  4. H. Bai and G. Shi, MDPI 7, 267 (2007).

    Article  CAS  Google Scholar 

  5. J. Janata and M. Josowicz, Nature (London, U.K.) 2, 19 (2003).

    CAS  Google Scholar 

  6. H. Ullah, A. A. Shah, S. Bilal, and K. Ayub, J. Phys. Chem. C 117, 23701 (2013).

    Article  CAS  Google Scholar 

  7. A. S. Rad, M. Esfahanian, E. Ganjian, and H. A. Tayebi, Zeitschr. Phys. Chem. 230, 1487 (2016).

    Google Scholar 

  8. I. Fratoddi, I. Venditti, C. Cametti, and M. V. Russo, Sens. Actuators, B 220, 534 (2015).

    Article  CAS  Google Scholar 

  9. P. Jiménez, W. K. Maser, P. Castell, M. T. Martinez, and A. M. Benito, Macromol. Rapid Commun. 30, 418 (2009).

    Article  Google Scholar 

  10. Y. Xia, A. G. MacDiarmid, and A. J. Epstein, Macromolecules 27, 7212 (1994).

    Article  CAS  Google Scholar 

  11. T. Thanpitcha, A. Sirivat, A. M. Jamieson, and R. Rujiravanit, Carbohydr. Polym. 64, 560 (2006).

    Article  CAS  Google Scholar 

  12. A. S. Rad, S. G. Ateni, H. Tayebi, P. Valipour, and V. P. Foukolaei, J. Sulf. Chem. 37, 622 (2016).

    Google Scholar 

  13. D. W. Kononen, Bull. Environ. Con. Toxicol. 41, 371 (1988).

    Article  CAS  Google Scholar 

  14. X. Yang and C. Shang, Water Res. 39, 1709 (2005).

    Article  CAS  Google Scholar 

  15. F. S. Fawcett and R. D. Lipscomb, J. Am. Chem. Soc. 86, 2576 (1964).

    Article  CAS  Google Scholar 

  16. J. M. Roberts and Y. Liu, Atmos. Chem. Phys. 19, 4419 (2019).

    Article  CAS  Google Scholar 

  17. P. Zucca and E. Sanjust, Molecules 19, 14139 (2014).

    Article  Google Scholar 

  18. E. Vessally, F. Behmagham, B. Massuomi, A. Hosseinian, and K. Nejati, J. Mol. Model. 23, 138 (2017).

    Article  CAS  Google Scholar 

  19. E. B. Kadossov, P. Rajasekar, and N. F. Materer, J. Phys. Chem. B 108, 303 (2004).

    Article  CAS  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford CT, 2016).

    Google Scholar 

  21. T. Koopmans, Physica (Amsterdam, Neth.) 1, 104 (1934).

  22. P. Politzer, J. S. Murray, and Z. Peralta-Inga, Int. J. Quantum Chem. 85, 676 (2001).

    Article  CAS  Google Scholar 

  23. P. Thul, V. P. Gupta, V. J. Ram, and P. Tandon, Spectrochim. Acta 75, 251 (2010).

    Article  Google Scholar 

  24. M. Arjmandi, M. Peyravi, M. Pourafshari Chenar, M. Jahanshahi, and A. Arjmandi, J. Water Environ. Nanotechnol. 3, 70 (2018).

    CAS  Google Scholar 

  25. K. Fukui, T. Yonezawa, and H. Shingu, Chem. Phys. 20, 722 (1952).

    CAS  Google Scholar 

  26. M. Peyravi, M. Arjmandi, R. Khakpour, and M. Jahanshahi, Surf. Interfac. 16, 174 (2019).

    Article  CAS  Google Scholar 

  27. B. J. Chem. Educ. 76, 320 (1999).

    Google Scholar 

  28. M. Kamran, H. Ullah, A. A. Shah, S. Bilal, A. A. Tahir, and K. Ayub, Polymer 72, 30 (2015).

    Article  CAS  Google Scholar 

  29. M. Arjmandi, M. Pourafshari Chenar, M. Peyravi, M. Jahanshahi, A. Arjmandi, and A. Shokuhi Rad, IJE Trans. C: Asp. 31, 1473 (2018).

    CAS  Google Scholar 

  30. IUPAC, Compendium of Chemical Terminology, 2nd ed. (Gold Book, 1997).

    Google Scholar 

Download references

Funding

The authors acknowledge the funding support of Babol Noshirvani University of Technology through grant program no. BNUT/389026/97.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehrzad Arjmandi or Majid Peyravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrzad Arjmandi, Arjmandi, A., Peyravi, M. et al. First-Principles Study of Adsorption of XCN (X = F, Cl, and Br) on Surfaces of Polyaniline. Russ. J. Phys. Chem. 94, 2148–2154 (2020). https://doi.org/10.1134/S0036024420100027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420100027

Keywords:

Navigation