Skip to main content
Log in

Linear and Surface Tensions in the Region of Contact Angles of a Three-Aggregate System and Relaxation Times

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

An approach is formulated that allows calculation of three types of surface and linear tensions in the region of contact angles of a three-aggregate system. A molecular theory for three-aggregate systems based on the lattice gas model (LGM) is used to calculate surface tension (ST) and linear tension (LT). It provides a uniform description of molecular distributions of mixture components inside three bulk phases in different aggregate states and three types of their interfaces. The calculations are based on the Gibbs definition of STs and LTs, derived by calculating the excess free energy determined from interfaces of the mentioned phases, and experimental data on the relaxation times of mass and momentum transfer processes. For simplicity of description, a general approach is formulated for interfaces with ideal geometry: planar and spherical. Under real conditions, solid phases are typically nonequilibrium because of hindered redistribution of components. Non-equilibrium analogs of equilibrium potentials must be developed to describe these. Diffusion-type kinetic equations for unary and pair distribution functions must be used to calculate their evolution. Distributions of components of mobile vapor and liquid phases adapt to the distribution of components in solid phases. Problems in calculating STs and LTs are discussed using the example of vapor–liquid phases in a solid-phase porous matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Gibbs, Thermodynamics: Statistical Mechanics (Nauka, Moscow, 1982).

    Google Scholar 

  2. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green, London, 1954).

    Google Scholar 

  3. V. Ya. Anosov and S. A. Pogodin, Basic Principles of Physico-Chemical Analysis (Moscow, 1947) [in Russian].

    Google Scholar 

  4. V. Ya. Anosov, M. I. Ozerova, and Yu. L. Fialkov, Principles of Physico-Chemical Analysis (Moscow, 1976) [in Russian].

    Google Scholar 

  5. A. V. Storonkin, Thermodynamics of Heterogeneous Systems (LGU, Leningrad, 1967) [in Russian].

    Google Scholar 

  6. V. A. Kireev, Course on Physical Chemistry (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  7. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  8. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  9. M. Jaycock and J. Parfitt, Chemistry of Interfaces (Ellis Horwood, Chichester (U.K.), 1981).

    Google Scholar 

  10. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford Univ., Oxford (U.K.), 1978).

    Google Scholar 

  11. E. D. Shchukin, A. V. Pertsev, and E. A. Amelina, Colloid Chemistry (Vyssh. Shkola, Moscow, 1992) [in Russian].

    Google Scholar 

  12. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1115 (2018).

    CAS  Google Scholar 

  13. A. I. Rusanov, Kolloidn. Zh. 39, 704 (1977).

    Google Scholar 

  14. J. W. Cahn, J. Chem. Phys. 66, 3367 (1977).

    Google Scholar 

  15. C. Ebner and W. F. Saam, Phys. Rev. Lett. 38, 1486 (1977).

    CAS  Google Scholar 

  16. A. I. Rusanov, A. K. Shchekin, and D. V. Tatyanenko, Colloids Surf. A 250, 263 (2004).

    CAS  Google Scholar 

  17. M. Volmer, Kinetic der Phasenbildung (Steinkopff, Dresden, Leipzig, 1939).

    Google Scholar 

  18. Yu. K. Tovbin, Russ. J. Phys. Chem. A 90, 1507 (2016).

    CAS  Google Scholar 

  19. Yu. K. Tovbin, E. S. Zaitseva, and A. B. Rabinovich, Russ. J. Phys. Chem. A 90, 1248 (2016).

    CAS  Google Scholar 

  20. G. F. Voronin, Principles of Thermodynamics (MGU, Moscow, 1987) [in Russian].

    Google Scholar 

  21. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 2424 (2018).

    CAS  Google Scholar 

  22. Yu. K. Tovbin, Russ. J. Phys. Chem. A 93, 1662 (2019).

    CAS  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

  24. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94 (1) (2020, in press).

  25. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94 (2) (2020, in press).

  26. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1 (2018).

    CAS  Google Scholar 

  27. C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

    CAS  Google Scholar 

  28. T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

    CAS  Google Scholar 

  29. K. Huang, Statistical Mechanics (Wiley, New York, 1987).

    Google Scholar 

  30. T. Hill, Statistical Mechanics;Principles and Selected Applications (Dover, New York, 1987).

    Google Scholar 

  31. Yu. K. Tovbin, Small Systems and Fundamentals of Thermodynamics (Fizmatlit, Moscow, 2018; CRC, Boca Raton, 2018).

  32. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface (Nauka, Moscow, 1990; CRC, Boca Raton, 1991).

    Google Scholar 

  33. Yu. K. Tovbin, The Molecular Theory of Adsorption in Porous Solids (Nauka, Moscow, 2012; CRC, Boca Raton, 2017).

  34. Yu. K. Tovbin, Russ. J. Phys. Chem. A 89, 1971 (2015).

    CAS  Google Scholar 

  35. Yu. K. Tovbin, Russ. J. Phys. Chem. A 93, 603 (2019).

    CAS  Google Scholar 

  36. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94 (9) (2020, in press).

  37. Yu. K. Tovbin, Russ. J. Phys. Chem. A 90, 1439 (2016).

    CAS  Google Scholar 

  38. Yu. K. Tovbin, Russ. J. Phys. Chem. A 91, 1621 (2017).

    CAS  Google Scholar 

  39. Yu. K. Tovbin, Russ. J. Phys. Chem. A 91, 403 (2017).

    CAS  Google Scholar 

  40. S. Ono and S. Kondo, Handbuch der Physik (Springer, Berlin, 1960).

    Google Scholar 

  41. J. E. Lane, Aust. J. Chem. 21, 827 (1968).

    CAS  Google Scholar 

  42. E. M. Piotrovskaya and N. A. Smirnova, Kolloidn. Zh. 41, 1134 (1979).

    CAS  Google Scholar 

  43. Yu. K. Tovbin, Kolloidn. Zh. 45, 707 (1983).

    CAS  Google Scholar 

  44. N. A. Smirnova, Molecular Theories of Solutions (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  45. L. D. Landau, Zh. Eksp. Teor. Fiz. 5, 627 (1937).

    Google Scholar 

  46. L. D. Landau, Collection of Scientific Works (Nauka, Moscow, 1969), Vol. 1, p. 234 [in Russian].

    Google Scholar 

  47. F. E. Neumann, in Vorlesungen uber die Theorie der Kapillaritat, Ed. by A. Wangerin (Treuner, Leipzig, 1984), Chap. 6, p. 161.

    Google Scholar 

  48. S. Gregg and K. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).

    Google Scholar 

  49. W. A. Steele, The Interactions of Gases with Solid Surfaces (Pergamon, New York, 1974).

    Google Scholar 

  50. N. N. Avgul’, A. V. Kiselev, and D. P. Poshkus, Adsorption of Gases and Vapors at Uniform Surfaces (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  51. A. V. Kiselev, D. P. Poshkus, and Ya. I. Yashin, Molecular Foundations of Adsorptional Chromatography (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  52. Yu. K. Tovbin, Russ. J. Phys. Chem. A 88, 1932 (2014).

    CAS  Google Scholar 

  53. Yu. K. Tovbin, Prog. Surf. Sci. 34, 1 (1990).

    CAS  Google Scholar 

  54. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1115 (2018).

    CAS  Google Scholar 

  55. Yu. K. Tovbin, D. V. Eremich, V. N. Komarov, and E. E. Gvozdeva, Khim. Fiz. 26 (9), 98 (2007).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00030a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K. Linear and Surface Tensions in the Region of Contact Angles of a Three-Aggregate System and Relaxation Times. Russ. J. Phys. Chem. 94, 1515–1525 (2020). https://doi.org/10.1134/S0036024420080270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420080270

Keywords:

Navigation