Skip to main content
Log in

Structural, Electronic, Elastic Properties, and Phase Transitions of Type-I and Type-VIII Sr8Al16Sn30 Clathrates from First-principles Calculations

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this work, the phase transitions, the elastic properties, and the electronic properties of Sr8Al16Sn30 under different pressures are investigated by first-principle calculations based on density functional theory. The E–V curves show that the type-VIII is the stable ground state phase, while the type-I is considered to be metastable at the lowest energy. Ignoring the temperature effect, type-VIII clathrate is always more stable than type-I, and the indication of phase transitions from type-I to type-VIII structure is not observed under increasing hydrostatic pressure. The obtained elastic constant values indicating that two structures under 0 and 3 GPa are stable, and not stable under 7 GPa. The dependences of the elastic constants cij, the elastic modulus, the Poisson ratio, the brittle and ductile behavior, and the elastic anisotropy on pressure in two structures are further analyzed. The electronic structures of type-I and type-VIII clathrates significantly change under increased pressure. The type-I clathrate with a narrow gap turns into the metal, and for type-VIII the band gap decreases in 3 GPa and the band gap increases in 7 GPa. This show that pressure tuning plays an important role in improving material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. Saiga, K. Suekuni, S. K. Deng, T. Yamamoto, Y. Kono, N. Ohya, and T. Takabatake, J. Alloys Compd. 507, 1 (2010).

    Article  CAS  Google Scholar 

  2. M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Appl. Phys. Lett. 92, 041901 (2008).

    Article  Google Scholar 

  3. K. Suekuni, M. A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa, and T. Takabatake, Phys. Rev. B 77, 235119 (2008).

    Article  Google Scholar 

  4. X. Shi, L. Chen, and C. Uher, Int. Mater. Rev. 61, 379 (2016).

    Article  CAS  Google Scholar 

  5. S. K. Deng, Y. Saiga, K. Suekuni, and T. Takabatake, J. Appl. Phys. 108, 073705 (2010).

    Article  Google Scholar 

  6. S. K. Deng, Y. Saiga, K. Kajisa, and T. Takabatake, J. Appl. Phys. 109, 103704 (2011).

    Article  Google Scholar 

  7. Y. Kono, N. Ohya, Y. Saiga, K. Suekuni, and T. Takabatake, J. Electron. Mater. 40, 845 (2011).

    Article  CAS  Google Scholar 

  8. D. Y. Meng, L. X. Shen, D. C. Li, X. X. Shai, and S. K. Deng, Acta Phys. Sin. 63, 177401 (2014).

    Google Scholar 

  9. Y. X. Chen, B. L. Du, Y. Saiga, K. Kajisa, and T. Takabatake, J. Appl. Phys. 46, 205302 (2013).

    Google Scholar 

  10. B. Du, Y. Saiga, K. Kajisa, and T. Takabatake, J. Appl. Phys. 111, 013707 (2012).

    Article  Google Scholar 

  11. Y. Kono, N. Ohya, T. Taguchi, K. Suekuni, T. Takabatake, S. Yamamoto, and K. Akai, J. Appl. Phys. 107, 123720 (2010).

    Article  Google Scholar 

  12. Y. Kono, K. Akai, N. Ohya, Y. Saiga, K. Suekuni, T. Takabatake, and S. Yamamoto, Mater. Trans. 53, 636 (2012).

    Article  CAS  Google Scholar 

  13. Y. Li, J. Gao, N. Chen, Y. Liu, Z. P. Luo, R. H. Zhang, X. Q. Ma, and G. H. Cao, Phys. B (Amsterdam, Neth.) 403, 1140 (2008).

  14. K. Akai, K. Kishimoto, T. Koyanagi, Y. Kono, and S. Yamamoto, J. Electron. Mater. 43, 2081 (2014).

    Article  CAS  Google Scholar 

  15. D. C. Li, L. Fang, S. K. Deng, K. Y. Kang, L. X. Shen, W. H. Wei, and H. B. Ruan, Phys. B (Amsterdam, Neth.) 407, 1238 (2012).

  16. H. G. von Schnering, W. Carrillo-Cabrera, R. Kröner, E.-M. Peters, and K. Peters, Z. Kristallogr.-New Cryst. Struct. 213, 677 (1998).

    CAS  Google Scholar 

  17. S. Leoni, W. Carrillo-Cabrera, and Y. Grin, J. Alloys Compd. 350, 113 (2003).

    Article  CAS  Google Scholar 

  18. M. C. Payne, M. P. Teter, D. C. Allan, and T. A. Arias, Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  20. B. Eisenmann, H. Schafer, and R. Zagler, J. Less-Common. Met. 118, 43 (1986).

    Article  CAS  Google Scholar 

  21. N. P. Blake, D. Bryan, S. Latturner, L. Møllnitz, G. D. Stucky, and H. Metiu, J. Chem. Phys. 114, 10063 (2001).

    Article  CAS  Google Scholar 

  22. E. N. Nenghabi and C. W. Myles, Phys. Rev. B 78, 195202 (2008).

    Article  Google Scholar 

  23. G. K. H. Madsen, K. Schwarz, P. Blaha, and D. J. Singh, Phys. Rev. B 68, 125212 (2003).

    Article  Google Scholar 

  24. K. Moriguchi, S. Munetoh, A. Shintani, and T. Motooka, Phys. Rev. B 64, 195409 (2001).

    Article  Google Scholar 

  25. S. Saita and A. Oshiyama, Phys. Rev. B 51, 2628 (1995).

    Article  Google Scholar 

  26. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  CAS  Google Scholar 

  27. R. Hill, Proc. Phys. Soc. London A 65,349 (1952).

    Article  Google Scholar 

  28. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).

    Google Scholar 

  29. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

    Article  CAS  Google Scholar 

  30. D. Connétable and O. Thomas, Phys. Rev. B 79, 094101 (2009).

    Article  Google Scholar 

  31. M. B. Kanoun, S. G. Said, A. H. Reshak, and A. E. Merad, Solid State Sci. 12, 887 (2010).

    Article  CAS  Google Scholar 

  32. Z. W. Huang, Y. H. Zhao, H. Hou, and P. D. Han, Phys. B (Amsterdam, Neth.) 407, 1075 (2012).

  33. S. F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  34. P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johnnsson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).

    Article  CAS  Google Scholar 

  35. K. B. Panda and K. S. Chandran, Comput. Mater. Sci. 35, 134 (2006).

    Article  CAS  Google Scholar 

  36. N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. J. Metiu, Chem. Phys. 115, 8060 (2001).

    CAS  Google Scholar 

  37. X. Gao, K. Uehara, D. D. Klug, S. Patchkovskii, J. S. Tse, and M. T. Tritt, Phys. Rev. B 72, 125202 (2005).

    Article  Google Scholar 

  38. D. J. Singh and I. I. Mazin, Phys. Rev. B 56, R1650 (1997).

    Article  CAS  Google Scholar 

  39. T. Uemura, K. Koga, K. Akai, and M. Matsuura, Trans. Mater. Res. Soc. Jpn. 31, 311 (2006).

    CAS  Google Scholar 

  40. T. Iitaka, Phys. Rev. B 75, 012106 (2007).

    Article  Google Scholar 

  41. J. F. Meng, N. V. C. Shekar, J. V. Badding, and G. S. Nolas, J. Appl. Phys. 89, 1730 (2001).

    Article  CAS  Google Scholar 

  42. R. Chasmar and R. Stratton, J. Electron. Control 7, 52 (1959).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Nature Science Foundation of China (grant nos. 61864012, 21701140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanxian Shen, Decong Li, Jiali Chen, Jianhua Lu, Wen Ge or Shukang Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanxian Shen, Li, D., Chen, J. et al. Structural, Electronic, Elastic Properties, and Phase Transitions of Type-I and Type-VIII Sr8Al16Sn30 Clathrates from First-principles Calculations. Russ. J. Phys. Chem. 93, 2749–2757 (2019). https://doi.org/10.1134/S0036024419130272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419130272

Keywords:

Navigation