Skip to main content
Log in

Oxidative Degradation of Azo Dyes in Combined Fenton-like Oxidative Systems

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Kinetic patterns of the degradation of Methyl Orange (MO) dye are studied upon persulfate (PS) and quasi-monochromatic UV radiation (mercury-free source: KrCl-excilamp, 222 nm, referred to below as UV) treatment in the presence or absence of iron ions. Oxidative systems can be placed in the following order according to the efficiency and rate of dye degradation: {PS/UV/Fe2+} > {PS/UV} > {PS/Fe2+} > UV > PS. It is found that only in the combined {PS/UV/Fe2+} system does the total conversion of MO occur, but its deep mineralization in an aqueous solution is also possible. When this happens, the removal of total organic carbon can be as high as 77%. Inhibitors of radical reactions are used to show that both hydroxyl and sulfate anion radicals participate in oxidative degradation in the combined systems {PS/UV/Fe2+} and {PS/Fe2+}, and the role of sulfate anion radicals is dominant in the process. The possibility of using quasi-monochromatic UV radiation for persulfate activation in the oxidative degradation of azo dyes is shown experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. Serpone, Y. M. Artemev, V. K. Ryabchuk, et al., Curr. Opin. Green Sustainable Chem. 6, 33 (2017).

    Google Scholar 

  2. D. B. Miklos, Ch. Remy, M. Jekel, et al., Water Res. 139, 118 (2018).

    Article  CAS  Google Scholar 

  3. W.-L. Wang, Q.-Y. Wu, N. Huang, et al., Water Res. 141, 105 (2018).

    Google Scholar 

  4. Minamata Conventionon Mercury. http://www.mercuryconvention.org/Convention/tabid/3426/language/en-US/Default.aspx.

  5. A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, et al., Ultraviolet and Vacuum-Ultraviolet Excilamps: Physics, Technology, and Applications (STT, Tomsk, 2011) [in Russian].

    Google Scholar 

  6. M. D. Murcia, N. O. Vershinin, and N. Briantceva, Chem. Eng. J. 266, 356 (2015).

    Article  CAS  Google Scholar 

  7. J.-W. Kang, S.-S. Kim, and D.-H. Kang, Food Res. Inter. 109, 325 (2009).

    Article  Google Scholar 

  8. A. Aristizábal, G. Perilla, J. A. Lara-Borrero, and R. Diez, Environ. Technol. (2018). Doi https://doi.org/10.1080/09593330.2018.1494755

    Article  Google Scholar 

  9. M. Gomez, M. D. Murcia, J. L. Gomez, et al., Chem. Eng. Process 49, 113 (2010).

    Article  CAS  Google Scholar 

  10. G. Matafonova and V. Batoev, Chemosphere 89, 637 (2012).

    Article  CAS  Google Scholar 

  11. O. N. Tchaikovskaya, N. G. Bryantseva, J. L. G. Carrasco, V. S. Krayukhina, M. D. Murcia Almagro, and M. Gómez Gómez, Russ. Phys. J. 59, 552 (2016). https://doi.org/10.1007/s11182-016-0805-9

    Article  CAS  Google Scholar 

  12. J. Wang and Sh. Wang, Chem. Eng. J. 334, 1502 (2018).

    Article  CAS  Google Scholar 

  13. S. Waclawek, H. V. Lutze, K. Grübel, et al., Chem. Eng. J. 330, 44 (2017).

    Article  CAS  Google Scholar 

  14. M. Khandarkhaeva, A. Batoeva, D. Aseev, et al., Ecotoxicol. Environ. Safety 137 (3), 35 (2017).

    Article  CAS  Google Scholar 

  15. D. G. Aseev, M. R. Sizykh, and A. A. Batoeva, Russ. J. Phys. Chem. A 91, 2327 (2017).

    Article  Google Scholar 

  16. A. Tsitonaki, B. Petry, M. Crimi, et al., Crit. Rev. Environ. Sci. Technol. 40, 55 (2010).

    Article  CAS  Google Scholar 

  17. M. Khandarkhaeva, D. Aseev, M. R. Sizykh, and A. A. Batoeva, Russ. J. Phys. Chem. A 90, 2177 (2016).

    Article  CAS  Google Scholar 

  18. H. Herrmann, Phys. Chem. Chem. Phys. 9, 3935 (2007).

    Article  CAS  Google Scholar 

  19. J. Criquet, N. Karpel, and V. Leitner, Chemosphere 77, 194 (2009).

    Article  CAS  Google Scholar 

  20. Y.-J. Shih, W. N. Putra, Y.-H. Huang, and J.-Ch. Tsai, Chemosphere 89, 1262 (2012).

    Article  CAS  Google Scholar 

  21. G. P. Anipsitakis and D. D. Dionysiou, Appl. Catal., B 54, 155 (2004).

    Article  CAS  Google Scholar 

  22. E. A. Sosnin, T. Oppenländer, and V. F. Tarasenko, J. Photochem. Photobiol., C 7, 145 (2006).

  23. S. Canonica, L. Meunier, and U. Gunten, Water Res. 42, 121 (2008).

    Article  CAS  Google Scholar 

  24. I. Epold, M. Trapido, and N. Dulova, Chem. Eng. J. 279, 452 (2015).

    Article  CAS  Google Scholar 

  25. Y. Ji, C. Ferronato, A. Salvador, et al., Sci. Total Environ. 472, 800 (2014).

    Article  CAS  Google Scholar 

  26. C. S. Liu, K. Shih, C. X. Sun, and F. Wang, Sci. Total Environ. 416, 507 (2012).

    Article  CAS  Google Scholar 

  27. H. Li, J. Guo, L. Yang, and Y. Lan, Sep. Purif. Technol. 132, 168 (2014).

    Article  CAS  Google Scholar 

  28. H. Y. Liang, Y.-G. Zhang, S.-B. Huang, and I. Hussain, Chem. Eng. J. 218, 384 (2013).

    Article  CAS  Google Scholar 

  29. H. Kusic, I. Peternel, S. Ukic, et al., Chem. Eng. J. 172, 109 (2011).

    Article  CAS  Google Scholar 

  30. E. Brillas and C. A. Martinez, Appl. Catal., B 166–167, 603 (2015).

    Article  Google Scholar 

  31. F. C. Moreira, S. Garcia-Segura, V. J. P. Vilar, et al., Appl. Catal., B 142–143, 877 (2013).

    Article  Google Scholar 

  32. M. M. Ahmed and S. Chiron, Water Res. 48, 229 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of State Task no. 0339-2016-0005 for the Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Batoeva.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizykh, M.R., Batoeva, A.A. Oxidative Degradation of Azo Dyes in Combined Fenton-like Oxidative Systems. Russ. J. Phys. Chem. 93, 2349–2355 (2019). https://doi.org/10.1134/S003602441912029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441912029X

Keywords:

Navigation