Skip to main content
Log in

Polarity of Thymine and 6-Methyluracil-Modified Porous Polymers, According to Data from Inverse Gas Chromatography

  • PHYSICAL CHEMISTRY OF SEPARATION PROCESSES. CHROMATOGRAPHY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The affinity of surfaces of porous polymer Polysorb-1 samples modified with thymine (5-methyluracil) and 6-methyluracil toward sorbates capable of various intermolecular interactions is studied via inverse gas chromatography in the infinite dilution mode. It is found that the first modifier yields one-dimensional tape supramolecular structures as a result of self-assembling, while the second produces two-dimensional network structures. The contributions from intermolecular interactions to the Helmholtz energy of adsorption are calculated via the linear decomposition of retention parameters. The dispersion and specific components of the energy of adsorption are determined according to Dong. It is shown that modifying the surface of a porous polymer with thymine increases both specific and dispersive components of the energy of adsorption, while the contributions from different intermolecular interactions and the polarity of the surface as a result of modifying with thymine change slightly. Modifying a porous polymer with the same amount of 6‑methyluracil results in a notable rise in polarity, due to an increase in the contributions from interactions of induction and orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. Yu. Zaitsev, Ross. Nanotekhnol. 2 (3), 121 (2010).

    Google Scholar 

  2. S. Yu. Zaitsev, V. P. Vereschetin, S. P. Gromov, et al., Supramol. Sci. 4, 519 (1997).

    Article  CAS  Google Scholar 

  3. S. Yu. Zaitsev, S. P. Gromov, O. A. Fedorova, et al., Colloids Surf. 131, 325 (1998).

    Article  CAS  Google Scholar 

  4. H. Bouas-Laurent, A. Castellan, J.-P. Desvergne, et al., Chem. Soc. Rev. 30, 248 (2001).

    Article  CAS  Google Scholar 

  5. M. H. Abraham and G. S. Whiting, J. Am. Oil Chem. Soc. 69, 1236 (1992).

    Article  CAS  Google Scholar 

  6. G. Reck, R. G. Kretschmer, L. Kutschabsky, et al., Acta Crystallogr., Sect. A 44, 417 (1988).

    Article  Google Scholar 

  7. S. P. Ivanov, K. A. Lysenko, O. A. Kolyadina, Z. A. Starikova, and Yu. I. Murinov, Russ. J. Phys. Chem. A 79, 215 (2005).

    CAS  Google Scholar 

  8. L. Fallon, Acta Crystallogr., Sect. B 29, 2549 (1973).

    Article  CAS  Google Scholar 

  9. V. Yu. Gus’kov, Yu. Yu. Gainullina, S. P. Ivanov, and F. Kh. Kudasheva, Protect. Met. Phys. Chem. Surf. 50, 55 (2014).

    Article  Google Scholar 

  10. V. Yu. Gus’kov, Yu. Yu. Gainullina, S. P. Ivanov, and F. Kh. Kudasheva, Russ. J. Phys. Chem. A 88, 1042 (2014).

    Article  Google Scholar 

  11. K. Venkatasubramanian, R. J. Mojeste, and Z. M. Trefonas, J. Heterocycl. Chem. 12, 699 (1975).

    Article  Google Scholar 

  12. A. E. Masunov, S. I. Grishchenko, and P. M. Zorkii, Zh. Fiz. Khim. 67, 221 (1993).

    CAS  Google Scholar 

  13. S. P. Ivanov, Cand. Sci. (Chem.) Dissertation (Inst. Org. Chem. Ural. Sci. Center of RAS, Ufa, 2003).

  14. H. Strenglanz and C. E. Bugg, Biochim. Biophys. Acta 378, 1 (1975).

    Article  Google Scholar 

  15. K. Ozeki, N. Sakabe, and J. Tanaka, Acta Crystallogr. Sect. B 25, 1038 (1969).

    Article  CAS  Google Scholar 

  16. N. B. Leonidov, P. M. Zorkii, A. E. Masunov, et al., Zh. Fiz. Khim. 67, 2464 (1993).

    CAS  Google Scholar 

  17. V. Yu. Gus’kov, R. A. Khabibullina, and F. Kh. Kudasheva, Sorbtsion. Khromatogr. Protsessy 11, 415 (2011).

    Google Scholar 

  18. D. K. Kondepudi, J. Digits, and K. Bullock, Chirality 7, 62 (1995).

    Article  CAS  Google Scholar 

  19. T. Kawasaki, K. Suzuki, Y. Hakoda, and K. Soai, Angew. Chem., Int. Ed. Engl. 47, 496 (2008).

    Article  CAS  Google Scholar 

  20. N. A. Katsanos and G. Karaiskakis, Time-Resolved Inverse Gas Chromatography and Its Applications (HNBg, New York, 2004).

  21. V. Yu. Gus’kov, V. E. Semenov, Yu. Yu. Gainullina, A. S. Mikhailov, and F. Kh. Kudasheva, Russ. Chem. Bull. 64, 800 (2015).

    Article  Google Scholar 

  22. O. G. Larionov, V. V. Petrenko, and N. P. Platonova, Zh. Fiz. Khim. 63, 2533 (1989).

    CAS  Google Scholar 

  23. V. Yu. Gus’kov, Yu. Yu. Gainullina, S. P. Ivanov, et al., J. Chromatogr., A 1356, 230 (2014).

    Article  Google Scholar 

  24. S. N. Yashkin, Russ. J. Appl. Chem. 85, 1376 (2012).

    Article  CAS  Google Scholar 

  25. S. Dong, M. Brendle, and J. B. Donnet, Chromatograhia 28, 469 (1989).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation, project no. 17-73-10181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Gainullina.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainullina, Y.Y., Gus’kov, V.Y. & Timofeeva, D.V. Polarity of Thymine and 6-Methyluracil-Modified Porous Polymers, According to Data from Inverse Gas Chromatography. Russ. J. Phys. Chem. 93, 2477–2481 (2019). https://doi.org/10.1134/S0036024419120082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120082

Keywords:

Navigation