Skip to main content
Log in

Highly Active CeO2 Nanocatalysts for Low-Temperature CO Oxidation

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Ceria (CeO2) nanocatalysts were synthesized by three different methods via a simple sol–gel method (SGM), precipitation method (PPM), and solution combustion method (SCM) for CO oxidation reaction. The results show that the CeO2 catalysts prepared by SGM possess small crystallite size (9 nm), more lattice defects (active sites), high specific surface area (188 m2 g–1), and better thermal stability. Raman spectra showed that large number oxygen vacancies were possessed by CeO2-SGM catalysts as compared to CeO2-PPM and CeO2-SCM. It was observed that the catalytic activity for CO oxidation reaction is greatly influenced by the preparation method. The order of activity and stability of CeO2 material prepared by different methods for CO oxidation process is as follows: CeO2-SGM > CeO2-PPM > CeO2-SCM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Singhania and A. N. Bhaskarwar, Catal. Rev. (2017, in press).

  2. A. Singhania, A. N. Bhaskarwar, D. M. Kale, et al., IN Patent No. 2308/DEL/2014 (2014).

  3. A. Singhania, V. V. Krishnan, A. N. Bhaskarwar, et al., Catal. Commun. 93, 5 (2017).

    Article  CAS  Google Scholar 

  4. F. Liu, C. Wu, G. Yang, et al., J. Phys. Chem. C 119, 15500 (2015).

    Article  CAS  Google Scholar 

  5. W. Song, Y. Su, and E. J. M. Hensen, J. Phys. Chem. C 119, 27505 (2015).

    Article  CAS  Google Scholar 

  6. J. X. Liu, Z. Liu, I. A. W. Filot, et al., Catal. Sci. Technol. 7, 75 (2017).

    Article  CAS  Google Scholar 

  7. Y. P. G. Chua, G. T. K. K. Gunasooriya, M. Saeys, et al., J. Catal. 311, 306 (2014).

    Article  CAS  Google Scholar 

  8. C. H. Kuo, W. Li, W. Song, et al., Appl. Mater. Interface 6, 11311 (2014).

    Article  CAS  Google Scholar 

  9. D. Liu, Y. F. Zhu, and Q. Jiang, RSC Adv. 5, 1587 (2015).

  10. K. J. Yoon, H. K. Kang, and J. E. Yie, Korean J. Chem. Eng. 14, 399 (1997).

    Article  CAS  Google Scholar 

  11. A. Singhania and S. M. Gupta, Beilstein J. Nanotechnol. 8, 264 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Singhania and S. M. Gupta, Beilstein J. Nanotechnol. 8, 1546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Sasirekha, P. Sangeetha, and Y. W. Chen, J. Phys. Chem C 118, 15226 (2014).

    Article  CAS  Google Scholar 

  14. X. Ning, H. Yu, F. Peng, et al., J. Catal. 325, 136 (2015).

    Article  CAS  Google Scholar 

  15. X. Du, H. Y. Li, J. Yu, et al., Catal. Sci. Technol. 5, 3970 (2015).

    Article  CAS  Google Scholar 

  16. C. M. Olmos, L. E. Chinchilla, J. J. Delgado, et al., Catal. Lett. 146, 144 (2016).

    Article  CAS  Google Scholar 

  17. B. M. Reddy, G. Thrimurthulu, L. Katta, et al., J. Phys. Chem. C 113, 15882 (2009).

    Article  CAS  Google Scholar 

  18. B. M. Reddy, K. N. Rao, and P. Bharali, Ind. Eng. Chem. Res. 48, 8478 (2009).

    Article  CAS  Google Scholar 

  19. B. M. Reddy, P. Lakshmanan, P. Bharali, et al., J. Phys. Chem. C 111, 10478 (2007).

    Article  CAS  Google Scholar 

  20. B. M. Reddy, P. Bharali, P. Saikia, et al., J. Phys. Chem. C 112, 11729 (2008).

    Article  CAS  Google Scholar 

  21. R. W. McCabe, R. K. Usmen, in Studies in Surface Science and Catalysis, Ed. by W. N. Delgass, E. Iglesia, and A. T. Bell (Elsevier, Amsterdam, 1996), Vol. 101, p. 355.

    Google Scholar 

  22. N. Murayama, J. Ceram. Soc. Jpn. 11621, 1167 (2008).

    Article  Google Scholar 

  23. F. Caputo, M. De Nicola, A. Sienkiewicz, et al., Nanoscale 7, 15643 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. C. Sun, H. Li, and L. Chen, Energy Environ. Sci. 5, 8475 (2012).

    Article  CAS  Google Scholar 

  25. A. Singhania, V. V. Krishnan, A. N. Bhaskarwar, et al., Int. J. Hydrogen Energy 41, 10538 (2016).

    Article  CAS  Google Scholar 

  26. A. Singhania, A. N. Bhaskarwar, D. M. Kale, et al., in Patent No. 2259/DEL/2014 (2014).

  27. P. Gross, W. F. Biller, D. F. Greene, and K. K. Kearby, US Patent No. 3370914.

  28. M. Shelef and R. W. McCabe, Catal. Today 62, 35 (2000).

    Article  CAS  Google Scholar 

  29. Y. Zhang, Z. Wang, J. Zhou, et al., Int. J. Hydrogen Energy 34, 1688 (2009).

    Article  CAS  Google Scholar 

  30. Y. Zhang, R. Wang, X. Lin, et al., Int. J. Hydrogen Energy 39, 10853 (2014).

    Article  CAS  Google Scholar 

  31. N. Laosiripojana and S. Assabumrungrat, Appl. Catal., B 60, 107 (2005).

    Article  CAS  Google Scholar 

  32. W. Shen, X. Dong, Y. Zhu, et al., Microporous Mesoporous Mater. 85, 157 (2005).

    Article  CAS  Google Scholar 

  33. X. S. Huang, H. Sun, L. C. Wang, et al., Appl. Catal., B 90, 224 (2009).

    Article  CAS  Google Scholar 

  34. J. Qin, J. Lu, M. Cao, et al., Nanoscale 2, 2739 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. F. Huber, H. Venvik, M. Ronning, et al., Chem. Eng. J. 137, 686 (2008).

    Article  CAS  Google Scholar 

  36. Y. Zhang, Z. Wang, J. Zhou, et al., Int. J. Hydrogen Energy 33, 602 (2008).

    Article  CAS  Google Scholar 

  37. R. K. Usmen, R. W. McCabe, G. W. Graham, W. H. Weber, C. R. Peters, and H. S. Gandhi, Soc. Automotive Eng. Paper No. 922336 (Soc. Automotive Eng., 1992).

  38. M. F. Luo, Y. P. Song, J. Q. Lu, et al., J. Phys. Chem. C 111, 12686 (2007).

    Article  CAS  Google Scholar 

  39. E. S. Barca, M. Filipescu, C. Luculescu, et al., Appl. Surf. Sci. 363, 245 (2016).

    Article  CAS  Google Scholar 

  40. A. Singhania, V. V. Krishanan, A. N. Bhaskarwar, et al., Int. J. Hydrogen Energy (2017, in press).

  41. T. Hattori, K. Kobayashi, and M. Ozawa, Jpn. J. Appl. Phys. 56, 1 (2017).

    Google Scholar 

  42. I. V. Zagaynov, A. V. Vorobiev, and S. V. Utsev, Mater. Lett. 139, 237 (2015).

    Article  CAS  Google Scholar 

  43. K. Otsuka, Y. Wang, E. Sunada, et al., J. Catal. 175, 152 (1998).

    Article  CAS  Google Scholar 

  44. C. Agrafiotis, A. Tsetsekou, C. J. Stournaras, et al., Appl. Catal., B 34, 149 (2001).

    Article  CAS  Google Scholar 

  45. S. S. Deshmukh, M. H. Zhang, V. I. Kovalchuk, et al., Appl. Catal., B 45, 135 (2003).

    Article  CAS  Google Scholar 

  46. J. Qi, J. Chen, G. Li, et al., Energy Environ. Sci. 5, 8937 (2012).

    Article  CAS  Google Scholar 

  47. C. Ho, J. C. Yu, T. Kwong, et al., Chem. Mater. 17, 4514 (2005).

    Article  CAS  Google Scholar 

  48. M. Piumetti, T. Andana, S. Bensaid, et al., AIChe J. 63, 216 (2016).

    Article  CAS  Google Scholar 

  49. M. L. D. Santos, R. C. Lima, C. S. Riccardi, et al., Mater. Lett. 62, 4509 (2008).

    Article  CAS  Google Scholar 

  50. J. Lin, L. Li, Y. Huang, et al., J. Phys. Chem. C 115, 16509 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the grant under FRGS from GGSIPU, New Delhi to undertake the work and thank IIT Delhi for granting access to the characterization equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amit Singhania or Shipra Mital Gupta.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amit Singhania, Shipra Mital Gupta Highly Active CeO2 Nanocatalysts for Low-Temperature CO Oxidation. Russ. J. Phys. Chem. 92, 1900–1906 (2018). https://doi.org/10.1134/S0036024418100321

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418100321

Keywords:

Navigation