Skip to main content
Log in

Size Effects in Formation of Segregation and Grain-Boundary Decomposition in Nanocrystalline Alloys

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect of finite grain size on the formation of grain boundary segregations, and on the morphology of precipitates during decomposition, is studied. It is shown that in dilute solid solutions there are critical grain sizes at which decomposition is suppressed, both at the grain boundaries and in the bulk. A generalized phase-equilibrium diagram is constructed that considers the size factor, and a classification of the morphologies of precipitates during grain-boundary decomposition is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Y. Li, A. J. Bushby, and D. J. Dunstan, Proc. R. Soc. London, Ser. A 472, 20150890 (2016).

    Article  CAS  Google Scholar 

  2. J. W. Morris, in Proceedings of the International Symposium of Ultrafine Grained Steels, Ed. by S. Takaki and T. Maki (Iron Steel Inst., Tokyo, Japan, 2001), p. 34.

  3. H. Gao, B. Ji, I. L. Jager, et al., Proc. Natl. Acad. Sci. 100, 5597 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  5. H. Yu, M. Yan, C. Lu, et al., Sci. Rep. 6, 36810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Tianfu et al., Mater. Sci. Eng. A 432, 216 (2006).

    Article  CAS  Google Scholar 

  7. R. D. K. Misra et al., Acta Mater. 84, 339 (2015).

    Article  CAS  Google Scholar 

  8. D. M. Field and D. C. van Aken, Metall. Mater. Trans. A 47, 1912 (2016).

    Article  CAS  Google Scholar 

  9. R. Z. Valiev, N. A. Enikeev, and T. G. Langdon, Kovove Mater. 49, 1 (2011).

    CAS  Google Scholar 

  10. R. Z. Valiev, Nat. Mater. 12, 289 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties, and Applications, Ed. by S. H. Whang (Elsevier, Amsterdam, 2011).

    Google Scholar 

  12. Yu. N. Gornostyrev, I. K. Razumov, and A. Ye. Yermakov, J. Mater. Sci. 39, 5003 (2004).

    Article  CAS  Google Scholar 

  13. Metals and Alloys, The Handbook (Professional, Mir Sem’ya, St. Petersburg, 2003) [in Russian].

  14. M. I. Gol’dshtein, V. V. Popov, and A. E. Aksel’rod, Izv. Akad. Nauk SSSR, Met., No. 2, 93 (1986).

  15. T. Chandra, N. Wanderka, W. Reimers, and M. Ionescu, Mater. Sci. Forum 638, 3388 (2010).

    Google Scholar 

  16. Y. I. Hai-Iong, D. U. Lin-Xiu, et al., J. Iron Steel Res., Int. 16 (4), 72 (2009).

    Article  Google Scholar 

  17. I. K. Razumov, Russ. J. Phys. Chem. A 88, 494 (2014).

    Article  CAS  Google Scholar 

  18. J. Christian, The Theory of Transformations in Metals and Alloys (Equilibrium and General Kinetic Theory) (Pergamon, Oxford, 1975).

  19. R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge Univ. Press, Cambridge, 1939).

    Google Scholar 

  20. K. Ishida, J. Alloys Compd. 235, 244 (1996).

    Article  CAS  Google Scholar 

  21. A. A. Mirzoev, M. M. Yalalov, and D. A. Mirzaev, Phys. Met. Metallogr. 101, 341 (2006).

    Article  Google Scholar 

  22. A. A. Mirzoev, M. M. Yalalov, and D. A. Mirzaev, Phys. Met. Metallogr. 103, 83 (2007).

    Article  Google Scholar 

  23. A. A. Mirzoev, M. M. Yalalov, D. A. Mirzaev, and K. Yu. Okishev, Phys. Met. Metallogr. 114, 1 (2013).

    Article  Google Scholar 

  24. A. G. Khachaturyan, The Theory of Phase Transfations and Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  25. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  CAS  Google Scholar 

  26. I. K. Razumov, Yu. N. Gornostyrev, and A. Ye. Yermakov, J. Alloys Compd. 434–435, 535 (2007).

    Article  CAS  Google Scholar 

  27. K. Binder, Phys. Rev. A 29, 341 (1984).

    Article  CAS  Google Scholar 

  28. I. K. Razumov, Phys. Solid State 59, 639 (2017).

    Article  CAS  Google Scholar 

  29. I. N. Kar’kin, L. E. Kar’kina, P. A. Korzhavyi, and Yu. N. Gornostyrev, Phys. Solid State 59, 106 (2017).

    Article  CAS  Google Scholar 

  30. I. G. Shmakov, I. K. Razumov, O. I. Gorbatov, Yu. N. Gornostyrev, and P. A. Korzhavyi, JETP Lett. 103, 112 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Razumov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, I.K. Size Effects in Formation of Segregation and Grain-Boundary Decomposition in Nanocrystalline Alloys. Russ. J. Phys. Chem. 92, 1338–1344 (2018). https://doi.org/10.1134/S0036024418070233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418070233

Keywords:

Navigation