Skip to main content
Log in

The Temperature Effect on the Transport Properties of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The temperature dependences of specific and equivalent conductivities, viscosity, density, and crystallization temperature are determined for three 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([C n MeIm] [Tf2N], n = 2, 3, 4) ionic liquids saturated with water vapor at room temperature. It is established that in the area of positive temperatures, the relationship between viscosity and conductivity obeys the fractional Walden rule with exponents of 0.97, 0.92, and 0.92 for ionic liquids with ethyl-, propyl-, butylradicals, respectively. The temperature dependences of conductivity and viscosity are approximated using the Vogel–Fulcher–Tammann equation (R2 > 0.999), and ideal glass transition temperatures T0 are calculated for the investigated liquids. The obtained values of T0 depend largely on the chosen range of temperatures. It is shown that [C2MeIm][Tf2N] occupies a separate position with regard to [C3MeIm][Tf2N] and [C4MeIm][Tf2N].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sato, S. Marukane, and T. Morinaga, in Applications of Ionic Liquids in Science and Technology, Ed. by S. Handy (InTech, Croatia, 2011).

    Google Scholar 

  2. H. Srour, L. Chancelier, E. Bolimowska, et al., J. Appl. Electrochem. 46, 149 (2016).

    Article  CAS  Google Scholar 

  3. Y. Zhao and T. Bostrom, Curr. Org. Chem. 19, 556 (2015).

    Article  CAS  Google Scholar 

  4. P. Wasserheid and T. Welton, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  5. H. Tokuda, K. Hayamizu, K. Ishii, et al., J. Phys. Chem. B 109, 6103 (2005).

    Article  CAS  Google Scholar 

  6. H. Tokuda, S. Tsuzuki, M. A. B. H. Susan, et al., J. Phys. Chem. B 110, 19593 (2006).

    Article  CAS  Google Scholar 

  7. H. Tokuda, K. Ishii, M. A. B. H. Susan, et al., J. Phys. Chem. B 110, 2833 (2006).

    Article  CAS  Google Scholar 

  8. J. A. Widegren, E. M. Saurer, K. N. Marsh, et al., J. Chem. Thermodyn. 37, 569 (2005).

    Article  CAS  Google Scholar 

  9. H. Tokuda, K. Hayamizu, K. Ishii, et al., J. Phys. Chem. B 108, 16593 (2004).

    Article  CAS  Google Scholar 

  10. R. L. Gardas, M. G. Freire, P. J. Carvalho, et al., J. Chem. Eng. Data 52, 1881 (2007).

    Article  CAS  Google Scholar 

  11. E. Gomez, N. Calvar, E. A. Macedo, et al., J. Chem. Thermodyn. 45, 9 (2012).

    Article  CAS  Google Scholar 

  12. Y. Pan, L. E. Boyd, J. F. Kruplak, et al., J. Electrochem. Soc. 158, F1 (2011).

    Article  CAS  Google Scholar 

  13. G. B. Appetecchi, M. Montaninoa, M. Carewskaa, et al., Electrochim. Acta 56, 1300 (2011).

    Article  CAS  Google Scholar 

  14. H. A. Every, A. G. Bishop, D. R. MacFarlane, et al., Phys. Chem. Chem. Phys. 6, 1758 (2004).

    Article  CAS  Google Scholar 

  15. P. Bonhôte, A. P. Dias, N. Papageorgiou, et al., Inorg. Chem. 35, 1168 (1996).

    Article  Google Scholar 

  16. J. G. Huddleston, A. E. Visser, W. M. Reichert, et al., Green Chem. 3, 1564 (2001).

    Article  Google Scholar 

  17. J. Vila, L. M. Varela, and O. Cabeza, Electrochim. Acta. 52, 7413 (2007).

    Article  CAS  Google Scholar 

  18. M. Arm, F. Endres, and D. R. Macfarlane, et al., Nat. Mater. 8, 621 (2009).

    Article  Google Scholar 

  19. C. Chiappe and D. Pieraccini, J. Phys. Org. Chem. 18, 275 (2005).

    Article  CAS  Google Scholar 

  20. S. Corderí, B. González, N. Calvar, et al., Fluid Phase Equilib. 337, 11 (2013).

    Article  Google Scholar 

  21. A. M. O’Mahony, D. S. Silvester, L. Aldous, et al., J. Chem. Eng. Data 53, 2884 (2008).

    Article  Google Scholar 

  22. K. W. Pratt, W. F. Koch, Y. C. Wu, et al., Pure Appl. Chem. 73, 1783 (2001).

    Article  CAS  Google Scholar 

  23. A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 105, 4603 (2001).

    Article  CAS  Google Scholar 

  24. H. Matsumoto, K. Tanimoto, M. Nomura, et al., Chem. Lett. 29, 922 (2000).

    Article  Google Scholar 

  25. H. Zhao, Phys. Chem. Liq. 41, 545 (2003).

    Article  CAS  Google Scholar 

  26. K. Fumino, A. Wulf, and R. Ludwig, Angew. Chem. Int. Ed. 47, 8731 (2008).

    Article  CAS  Google Scholar 

  27. M. R. Housaindokht, H. E. Hosseini, M. S. S. Googheri, et al., J. Mol. Liq. 177, 94 (2013).

    Article  CAS  Google Scholar 

  28. W. Xu, E. I. Cooper, and C. A. Angell, J. Phys. Chem. B 107, 6170 (2003).

    Article  CAS  Google Scholar 

  29. C. P. Fredlake, J. M. Crosthwaite, and D. G. Hert, J. Chem. Eng. Data 49, 954 (2004).

    Article  CAS  Google Scholar 

  30. A. B. McEwen, H. L. Ngo, K. LeCompte, and J. L. Goldman, J. Electrochem. Soc. 146, 1687 (1999).

    Article  CAS  Google Scholar 

  31. S. V. Dzyuba and R. A. Bartsch, Tetrahedron Lett. 43, 4657 (2002).

    Article  CAS  Google Scholar 

  32. H. L. Ngo, K. LeCompte, L. Hargens, and A. B. McEwen, Thermochim. Acta 357–358, 97 (2000).

    Article  Google Scholar 

  33. S. V. Dzyuba and R. A. Bartsch, Chem. Phys. Chem. 3, 161 (2002).

    Article  CAS  Google Scholar 

  34. T. Nishida, Y. Tashiro, and M. Yamamoto, J. Fluorine Chem. 120, 135 (2003).

    Article  CAS  Google Scholar 

  35. W. Xu, L. M. Wang, R. A. Nieman, and C. A. Angell, J. Phys. Chem. B 107, 11749 (2003).

    Article  CAS  Google Scholar 

  36. M. Galiński, A. Lewandowski, and I. Stepniak, Electrochim. Acta 51, 5567 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Grishina.

Additional information

Original Russian Text © E.P. Grishina, N.O. Kudryakova, L.M. Ramenskaya, Yu.A. Fadeeva, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 4, pp. 614–620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishina, E.P., Kudryakova, N.O., Ramenskaya, L.M. et al. The Temperature Effect on the Transport Properties of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Russ. J. Phys. Chem. 92, 724–729 (2018). https://doi.org/10.1134/S0036024418040040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418040040

Keywords

Navigation