Skip to main content
Log in

Noncovalent Hydrogen Isotope Effects

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Zero-point energies (ZPE) and isotope effects, induced by intermolecular, noncovalent vibrations, are computed and tested by experimental data. The ZPE differences of H- and D-complexes of water with hydrogen, methane, and water molecules are about 100–300 cal/mol; they result to isotope effects IE of 1.20–1.70. Semi-ionic bonds between metal ions and water ligands in M(H2O) 2+6 complexes are much stronger; their ZPEs are about 12–14 kcal/mol per molecule and result to IE of 1.9–2.1 at 300 K. Protonated (deuterated) water and biwater exhibit the largest ZPE differences and isotope effects; the latter are 25–28 and 12–13 for water and biwater, respectively. Noncovalent IEs contribute markedly into the experimentally measured effects and explain many anomalous and even magic properties of the effects, such as the dependence of IE on the solvents and on the presence of the third substances, enormously large isotope effects at the mild conditions, the difference between IEs measured in the reactions of individual protiated and deuterated compounds and those measured in their mixture. Noncovalent IEs are not negligible and should be taken into account to make correct and substantiated conclusions on the reaction mechanisms. The kinetic equations are derived for the total isotope effects, which include noncovalent IEs as additive factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wade, Chem.-Biol. Interact. 117, 191 (1999)

    Article  CAS  Google Scholar 

  2. L. Sobczyk, M. Obrzud, and A. Filarowski, Molecules 18, 4467 (2013).

    Article  CAS  Google Scholar 

  3. A. L. Buchachenko and E. M. Pliss, Russ. Chem. Rev. 85, 557 (2016).

    Article  CAS  Google Scholar 

  4. M. Turowski, N. Yamakawa, J. Meller, J. Kimata, K. Ikegami, T. Hosoya, N. Tanaka, and E. Thornton, J. Am. Chem. Soc. 125, 13836 (2003).

    Article  CAS  Google Scholar 

  5. D. Rechavi, A. Scarso, and J. Rebek, Jr., J. Am. Chem. Soc. 126, 7738 (2004).

    Article  CAS  Google Scholar 

  6. T. Haino, K. Fukuta, H. Iwamoto, and S. Iwata, Chem. Eur. J. 15, 13286 (2009).

    Article  CAS  Google Scholar 

  7. C. N. Filler and J. Label, Compound Radiopharm. 42, 169 (1999).

    Article  Google Scholar 

  8. A. Valleix, S. Carrat, C. Caussignac, E. Leonce, and A. Tchapla, J. Chromatogr. A 1116, 109 (2006).

    Article  CAS  Google Scholar 

  9. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005).

    Article  CAS  Google Scholar 

  10. R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

    Article  CAS  Google Scholar 

  11. E. R. Kevin, M. Pitonak, P. Jurecka, and P. Hobza, Chem. Rev. 110, 5023 (2010).

    Article  Google Scholar 

  12. I. K. Ortega, A. Määttänen, T. Kurtén, and H. Vehkamäki, Comput. Theor. Chem. 965, 353 (2011).

    Article  CAS  Google Scholar 

  13. C. N. Ramachandran and E. Ruckenstein, Comput. Theor. Chem. 966, 84 (2011).

    Article  CAS  Google Scholar 

  14. J. Ceponkus, P. Uvdal, and B. Nelander, J. Chem. Phys. 129, 194306 (2008).

    Article  CAS  Google Scholar 

  15. N. Frank, J. Keutsch, D. Cruzan, and R. J. Saykally, Chem. Rev. 103, 2533 (2003).

    Article  Google Scholar 

  16. Y. Abate and P. D. Kleibe, J. Chem. Phys. 122, 084305 (2005).

    Article  CAS  Google Scholar 

  17. W. L. Pearson, C. Copeland, A. Kocak, S. Zallese, and R. B. Metz, J. Chem. Phys. 141, 204305 (2014).

    Article  Google Scholar 

  18. CRC Handbook of Chemistry and Physics, Ed. by W. M. Haynes, 94th ed. (CRC, Boca Raton, FL, 2013).

  19. M. V. Vener and N. B. Librovich, Int. Rev. Phys. Chem. 28, 407 (2009).

    Article  CAS  Google Scholar 

  20. O. Vendrell, F. Gatti, and H.-D. Meyer, J. Chem. Phys. 131, 034308 (2009).

    Article  Google Scholar 

  21. J. P. Klinman, Chem. Phys. Lett. 471, 179 (2009).

    Article  CAS  Google Scholar 

  22. J. P. Layfield and Sh. Hammes-Schiffer, Chem. Rev. 114, 346 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Buchachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchachenko, A.L., Breslavskaya, N.N. Noncovalent Hydrogen Isotope Effects. Russ. J. Phys. Chem. 92, 315–320 (2018). https://doi.org/10.1134/S003602441802005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441802005X

Keywords

Navigation