Skip to main content
Log in

Kinetics and mechanism of the reaction between aquacobalamin and isoniazid

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Kinetics of the reaction of aquacobalamin (H2OCbl) with isoniazid (isonicotinic acid hydrazide, INH) in weakly alkaline, neutral, and weakly acidic media was studied using UV–Vis spectroscopy. It is shown that the reversible formation of a complex more stable than those of cobalamin(III) with pyridine and hydrazine occurs during the reaction. A mechanism of the reaction includes reversible stages of binding a neutral INH molecule by cobalamin(III) through an oxygen atom with its subsequent deprotonation, along with the reversible interaction of H2OCbl and the negatively charged form of INH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Brown, Chem. Rev. 105, 2075 (2005).

    Article  CAS  Google Scholar 

  2. I. A. Dereven’kov, D. S. Salnikov, R. Silaghi-Dumitrescu, et al., Coord. Chem. Rev. 309, 68 (2016).

    Article  Google Scholar 

  3. L. Xia, A. G. Cregan, L. A. Berben, and N. E. Brasch, Inorg. Chem. 43, 6848 (2004).

    Article  CAS  Google Scholar 

  4. D. S. Salnikov, P. N. Kucherenko, I. A. Dereven’kov, et al., Eur. J. Inorg. Chem., 852 (2014).

    Google Scholar 

  5. M. Meier and R. van Eldik, Inorg. Chem. 32, 2635 (1993).

    Article  CAS  Google Scholar 

  6. P. N. Kucherenko, D. S. Salnikov, T. T. Bui, and S. V. Makarov, Macroheterocycles 6, 262 (2013).

    Article  CAS  Google Scholar 

  7. H. M. Marques and L. Knapton, J. Chem. Soc., Dalton Trans., 3827 (1997).

    Google Scholar 

  8. J. P. Thompson and T. C. Marrs, Clin. Toxicol. 50, 875 (2012).

    Article  CAS  Google Scholar 

  9. F. G. Alvarez and K. K. Guntupalli, Int. Care Med. 21, 641 (1995).

    Article  CAS  Google Scholar 

  10. E. H. S. Sousa, F. G. de Mesquita Vieira, J. S. Butler, et al., J. Inorg. Biochem. 140, 236 (2014).

    Article  CAS  Google Scholar 

  11. E. H. S. Sousa, L. A. Basso, D. S. Santos, et al., J. Biol. Inorg. Chem. 17, 275 (2012).

    Article  CAS  Google Scholar 

  12. N. Khairnar, K. Tayade, S. Bothra, et al., RSC Adv. 4, 41802 (2014).

    Article  CAS  Google Scholar 

  13. M. C. R. Freitas, J. M. S. António, R. L. Ziolli, et al., Polyhedron 30, 1922 (2011).

    Article  CAS  Google Scholar 

  14. I. de Aguiar, A. Tavares, A. C. Roveda, Jr., et al., Eur. J. Pharm. Sci. 70, 45 (2015).

    Article  Google Scholar 

  15. C. Dongli, J. Handong, Z. Hongyun, et al., Polyhedron 13, 57 (1994).

    Article  Google Scholar 

  16. K. K. Sharma, R. Singh, N. Fahmi, and R. V. Singh, J. Coord. Chem. 63, 3071 (2010).

    Article  CAS  Google Scholar 

  17. R. Obeid, S. N. Fedosov, and E. Nexo, Mol. Nutr. Food Res. 59, 1364 (2015).

    Article  CAS  Google Scholar 

  18. H. A. Barker, R. D. Smyth, H. Weissbach, et al., J. Biol. Chem. 235, 480 (1960).

    CAS  Google Scholar 

  19. T. A. Stich, A. J. Brooks, N. R. Buan, and T. C. Brunold, J. Am. Chem. Soc. 125, 5897 (2003).

    Article  CAS  Google Scholar 

  20. I. A. Dereven’kov, D. S. Salnikov, S. V. Makarov, et al., J. Inorg. Biochem. 125, 32 (2013).

    Article  Google Scholar 

  21. C. B. Perry and H. M. Marques, S. Afr. J. Chem. 58, 9 (2005).

    CAS  Google Scholar 

  22. L. Knapton and H. M. Marques, Dalton Trans., 889 (2005).

    Google Scholar 

  23. D. S. Salnikov, unpublished.

  24. H. A. Hassanin, L. Hannibal, D. W. Jacobsen, et al., Angew. Chem., Int. Ed. Engl. 48, 8909 (2009).

    Article  CAS  Google Scholar 

  25. R. S. Yalgudre and G. S. Gokavi, Ind. Eng. Chem. Res. 51, 5135 (2012).

    Article  CAS  Google Scholar 

  26. T. Scior and S. J. Garcés-Eisele, Cur. Med. Chem. 13, 2205 (2006).

    Article  CAS  Google Scholar 

  27. C. Ràfols, E. Bosch, R. Ruiz, et al., J. Chem. Eng. Data 57, 330 (2012).

    Article  Google Scholar 

  28. D. L. Rabenstein, J. Am. Chem. Soc. 95, 2797 (1973).

    Article  CAS  Google Scholar 

  29. L. A. Schumacher, R. Mukherjee, J. M. Brown, et al., Eur. J. Inorg. Chem., 4717 (2011).

    Google Scholar 

  30. F. F. Prinsloo, E. L. J. Breet, and R. van Eldik, J. Chem. Soc., Dalton Trans., 685 (1995).

    Google Scholar 

  31. H. A. Hassanin, L. Hannibal, D. W. Jacobsen, et al., Dalton Trans., 424 (2009).

    Google Scholar 

  32. K. S. Conrad and T. C. Brunold, Inorg. Chem. 50, 8755 (2011).

    Article  CAS  Google Scholar 

  33. A. S. Eisenberg, I. V. Likhtina, V. S. Znamenskiy, and R. L. Birke, J. Phys. Chem. A 116, 6851 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dereven’kov.

Additional information

Original Russian Text © S.O. Tumakov, I.A. Dereven’kov, D.S. Salnikov, S.V. Makarov, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 10, pp. 1634–1640.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumakov, S.O., Dereven’kov, I.A., Salnikov, D.S. et al. Kinetics and mechanism of the reaction between aquacobalamin and isoniazid. Russ. J. Phys. Chem. 91, 1839–1844 (2017). https://doi.org/10.1134/S0036024417100405

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417100405

Keywords

Navigation