Skip to main content
Log in

Kinetics of the Reaction between Cobinamide and Isoniazid in Aqueous Solutions

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of the reaction of diaquacobinamide (Cbi(III)) with isoniazid (iso-nicotinoyl hydrazide (INH)) are studied. It is determined that the composition of the products depends on the ratio between the concentrations of the reactants. Adding excess INH to cobinamide results in the rapid formation of a stable complex of Cbi(III) with two isoniazid molecules. If the concentrations of isoniazid and cobinamide are close, or cobinamide is in excess, then a complex of Cbi(III) with one isoniazid molecule initially forms. There is then a fast inner-sphere electron transfer to yield an unstable complex of reduced Cbi(II) with hydrazyl radical (RN2H2)(Cbi(II)) that decomposes to form reduced cobinamide and the products of the oxidation of isoniazid: isonicotinamide, pyridine-4-carboxaldehyde, and isonicotinic acid (INA). It is concluded that with a 1000% excess of cobinamide, the main product of the oxidation of INH is INA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Reference Guide for Emergency Doctor, Ed. by A. L. Vertkin (GEOTAR-MED, Moscow, 2001) [in Russian].

    Google Scholar 

  2. J. M. Marraffa, V. Cohen, and M. A. Howland, Am. J. Health Syst. Pharm. 69, 199 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. S. Bradberry and A. Vale, Medicine 35, 562 (2007).

    Article  Google Scholar 

  4. P. Preziosi, Curr. Drug. Metab. 8, 839 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. P. Wang, Acta Pharm Sin. B 6, 384 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. R. C. Watkins, E. L. Hambrick, G. Benjamin, and S. N. Chavda, J. Natl. Med. Assoc. 82, 57 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. M. L. Sievers and R. N. Herrier, Am. J. Hosp. Pharm 32, 202 (1975).

    CAS  PubMed  Google Scholar 

  8. W. P. Tai, H. Yue, and P. J. Hu, Adv. Ther. 25, 1085 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. A. I. Scott and C. A. Roessner, Biochem. Soc. Trans. 30, 613 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. K. E. Broderick et al., Exp. Biol. Med. 231, 641 (2006).

    Article  CAS  Google Scholar 

  11. A. Chan et al., Clin. Toxicol. 48, 709 (2010).

    Article  CAS  Google Scholar 

  12. D. S. Salnikov, P. N. Kucherenko, I. A. Dereven’kov, et al., Eur. J. Inorg. Chem., 852 (2014).

  13. D. S. Salnikov, S. V. Makarov, R. van Eldik, et al., Eur. J. Inorg. Chem., 4123 (2014).

  14. M. Brenner, S. Benavides, S. B. Mahon, et al., Clin. Toxicol. 52, 490 (2014).

    Article  CAS  Google Scholar 

  15. J. Jiang, A. Chan, S. Ali, et al., Sci. Rep. 6, 20831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. E. Broderick, V. Singh, S. Zhuang, et al., J. Biol. Chem. 280, 8678 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. S. O. Tumakov, I. A. Dereven’kov, D. S. Salnikov, and S. V. Makarov, Russ. J. Phys. Chem. A 91, 1839 (2017).

    Article  CAS  Google Scholar 

  18. W. C. Blackledge, A. Griesel, S. B. Mahon, et al., Anal. Chem. 82, 4216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. I. A. Dereven’kov, D. S. Salnikov, S. V. Makarov, et al., J. Inorg. Biochem. 125, 32 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. P. N. Kucherenko, D. S. Salnikov, Thu Thuy Bui, et al., Macroheterocycles 6, 262 (2013).

    Article  CAS  Google Scholar 

  21. W. C. Blackledge, C. W. Blackledge, A. Griesel, et al., Anal. Chem. 82, 4216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. I. A. Dereven’kov, D. S. Salnikov, R. Silaghi-Dumitrescu, et al., Coord. Chem. Rev. 309, 68 (2016).

    Article  CAS  Google Scholar 

  23. J. Dong, Y. Ren, S. Sun, et al., Dalton Trans. 46, 8377 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. V. Bogdándi, G. Lente, and I. Fábián, RSC Adv. 5, 67500 (2015).

  25. K. Johnsson and P. G. Schultz, J. Am. Chem. Soc. 116, 7425 (1994).

    Article  CAS  Google Scholar 

  26. M. J. Hynes, Proc. R. Irish Acad., Sect. B: Biol., Geol. Chem. Sci. 89, 435 (1989).

  27. B. K. Sinha and R. P. Mason, J. Drug. Metab. Toxicol. 5, 168 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. I. Metushi, J. Uetrecht, and E. Phillips, Br. J. Clin. Pharmacol. 81, 1030 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. L. V. Forbes et al., Biochem. Pharmacol. 84, 949 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-23-00204 P. The authors thank researcher N. Pechnikova at the Laboratory of Gas Chromatography, Mass Spectrometry, and EPR Spectrometry, Shared Scientific Resource Center, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia, for her help in analyzing the products of the oxidation of isoniazid via gas chromatography–mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sal’nikov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumakov, S.O., Dereven’kov, I.A., Sal’nikov, D.S. et al. Kinetics of the Reaction between Cobinamide and Isoniazid in Aqueous Solutions. Russ. J. Phys. Chem. 93, 265–270 (2019). https://doi.org/10.1134/S0036024419020274

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419020274

Keywords:

Navigation