Skip to main content
Log in

Coefficient of ozone mass transfer during its interaction with an aqueous solution of formic acid in a bubble column reactor

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A way of determining the coefficient of ozone mass transfer between the gas phase and liquid aqueous phase using a test compound (formic acid) is described. The values of ozone mass transfer coefficient (in aqueous solutions of 0.1–0.55 М HClO4 and 0–1 М НСООН, and in 0.75 М H2SO4, 0.125 М KHSO4, and 0–2 М НСООН) are determined along with the rate constants of the reaction of О3 with undissociated НСООН molecules and formate ions at 21 ± 1°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozone (Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  2. V. A. Yakobi, in Proceedings of the 27th All-Russia Seminar on Ozone and Others Ecologically Pure Oxidatives, Science and Engineering, Moscow, June 4, 2004 (Univ. Shkola, Moscow, 2004), p. 136.

    Google Scholar 

  3. B. Claudel, M. Nueilati, and J. Andrieu, Appl. Catal. 11, 217 (1984).

    Article  CAS  Google Scholar 

  4. J. M. A. Harmsen, L. Jelemensky, P. J. M. van Andel-Scheffer, B. F. M. Kuster, and G. B. Marin, Appl. Catal. A 165, 499 (1997).

    Article  CAS  Google Scholar 

  5. J. Lin, T. Nakajima, T. Jomoto, and K. Hiraiwa, Ozone Sci. Eng. 22, 241 (2000).

    Article  CAS  Google Scholar 

  6. C.-Y. Kuo, J. Chromatogr. A 804, 265 (1998).

  7. K. Yapsakli and Z. S. Can, Water Qual. Res. J. Canada 39, 140 (2004).

    CAS  Google Scholar 

  8. A. A. El-Raady and T. Nakajima, Ozone Sci. Eng. 27, 11 (2005).

    Article  Google Scholar 

  9. J. Hoigné and H. Bader, Water Res. 17 (2), 185 (1983).

    Article  Google Scholar 

  10. U. von Gunten, Water Res. 37 (7), 144 (2003).

    Google Scholar 

  11. C. von Sonntag and U. von Gunten, Chemistry of Ozone in Water and Wastewater Treatment. From Basic Principles to Applications (IWA, London, 2012).

    Google Scholar 

  12. E. Reisz, A. Fischbacher, S. Naumov, C. von Sonntag, and T. C. Schmidt, Ozone Sci. Eng. 36, 532 (2014).

    Article  CAS  Google Scholar 

  13. R. M. Dorland and H. Hibbert, Canad. J. Res. 18b, 30 (1940).

    Article  Google Scholar 

  14. E. Bernatek, P. Gronning, and T. Ledaal, Acta Chem. Scand. 18, 1966 (1964).

    Article  CAS  Google Scholar 

  15. A. V. Levanov, O. Ya. Isaikina, A. N. Tyutyunnik, E. E. Antipenko, and V. V. Lunin, J. Anal. Chem. 71, 549 (2016).

    Article  CAS  Google Scholar 

  16. J. L. Sotelo, F. J. Beltrán, F. J. Benitez, and J. Beltrán-Heredia, Water Res. 23, 1239 (1989).

    Article  CAS  Google Scholar 

  17. J.-C. Charpentier, in Advances in Chemical Engineering (Academic, New York, 1981), Vol. 11, p. 1.

    Google Scholar 

  18. H. Benbelkacem, H. Cano, S. Mathe, and H. Debellefontaine, Ozone Sci. Eng. 25, 13 (2003).

    Article  CAS  Google Scholar 

  19. S. Hatta, Technol. Rep. Tohok Imperial Univ. 10, 613 (1932).

    Google Scholar 

  20. F. J. Beltran, Ozone Reaction Kinetics for Water and Wastewater Systems (Lewis, CRC, Boca Raton, FL, 2004).

    Google Scholar 

  21. A. G. Khudoshin, A. N. Mitrofanova, and V. V. Lunin, Russ. Chem. Bull. 57, 283 (2008).

    Article  CAS  Google Scholar 

  22. A. V. Levanov, I. V. Kuskov, E. E. Antipenko, and V. V. Lunin, Russ. J. Phys. Chem. A 82, 1126 (2008).

    Article  CAS  Google Scholar 

  23. J. L. S. Bell, D. J. Wesolowski, and D. A. Palmer, J. Solution Chem. 22, 125 (1993).

    Article  CAS  Google Scholar 

  24. A. V. Levanov, O. Ya. Isaikina, and V. V. Lunin, Russ. J. Phys. Chem. A 90, 2136 (2016).

    Article  CAS  Google Scholar 

  25. A. V. Levanov, I. V. Kuskov, E. E. Antipenko, and V. V. Lunin, Russ. J. Phys. Chem. A 86, 757 (2012).

    Article  CAS  Google Scholar 

  26. A. V. Levanov, I. V. Kuskov, E. E. Antipenko, and V. V. Lunin, Russ. J. Phys. Chem. A 82, 2045 (2008).

    Article  CAS  Google Scholar 

  27. A. V. Levanov, I. V. Kuskov, K. B. Koiaidarova, E. E. Antipenko, and V. V. Lunin, Kinet. Catal. 47, 682 (2006).

    Article  CAS  Google Scholar 

  28. A. V. Levanov, I. V. Kuskov, E. E. Antipenko, and V. V. Lunin, Russ. J. Phys. Chem. A 80, 557 (2006).

    Article  CAS  Google Scholar 

  29. A. V. Levanov, I. V. Kuskov, K. B. Koiaidarova, A. V. Zosimov, E. E. Antipenko, and V. V. Lunin, Kinet. Catal. 46, 138 (2005).

    Article  CAS  Google Scholar 

  30. J. Hoigné and H. Bader, Water Res. 17 (2), 173 (1983).

    Article  Google Scholar 

  31. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Levanov.

Additional information

Original Russian Text © A.V. Levanov, O.Ya. Isaikina, R.B. Gasanova, V.V. Lunin, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 8, pp. 1307–1312.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levanov, A.V., Isaikina, O.Y., Gasanova, R.B. et al. Coefficient of ozone mass transfer during its interaction with an aqueous solution of formic acid in a bubble column reactor. Russ. J. Phys. Chem. 91, 1427–1431 (2017). https://doi.org/10.1134/S0036024417080167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417080167

Keywords

Navigation