Skip to main content
Log in

Preparation of Yb, N, and F doped Er3+:Y3Al5O12/TiO2 composite films for visible-light photocatalytic degradation of organic dyes

  • Colloid Chemistry and Electrochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Several up-conversion luminescent materials (Er3+:Y3Al5O12, Yb doped Er3+:Y3Al5O12, Yb and N co-doped Er3+:Y3Al5O12, Yb and F co-doped Er3+:Y3Al5O12, and Yb, N, and F co-doped Er3+:Y3Al5O12) were synthesized using sol–gel method. The corresponding TiO2 composite films (Er3+:Y3Al5O12/TiO2, Yb doped Er3+:Y3Al5O12/TiO2, Yb and N co-doped Er3+:Y3Al5O12/TiO2, Yb and F co-doped Er3+:Y3Al5O12/TiO2, and Yb, N, and F co-doped Er3+:Y3Al5O12/TiO2) were prepared by sol–gel dip-coating method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). The UV–Vis absorption and PL spectra of Er3+:Y3Al5O12 were also determined. The visible-light photocatalytic activity of the synthesized materials was evaluated in the degradation of Azo Fuchsine (AF) dye in aqueous solution. The concentration of the dye was monitored by UV–Vis spectroscopy. Some key factors, such as layer number, heat-treatment temperature and time on the photocatalytic activity of Yb, N, and F co-doped Er3+:Y3Al5O12/TiO2 composite films were studied. The doping of Yb, N, and F into Er3+:Y3Al5O12/TiO2 significantly enhanced the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film in the degradation of organic dyes. The experiments also indicated that the Yb, N, and F co-doped Er3+:Y3Al5O12/TiO2 composite film has a good visible-light photocatalytic activity to degrade other organic dyes under visible-light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Itavaara, S. Karjomaa, and J. F. Selin, Chemosphere 46, 879 (2002).

    Article  CAS  Google Scholar 

  2. V. P. Dinesh, P. Biji, A. Ashok, et al., RSC Adv. 4, 58930 (2014).

    Article  CAS  Google Scholar 

  3. S. Ahmed, M. G. Rasul, W. Martens, et al., J. Environ. Manage. 92, 311 (2011).

    Article  CAS  Google Scholar 

  4. H. Chen, X. X. Wang, J. X. Li, et al., J. Mater. Chem. A 3, 6073 (2015).

    Article  CAS  Google Scholar 

  5. C. L. Bianchi, S. Gatto, C. Pirola, et al., Appl. Catal. B: Environ. 146, 123 (2014).

    Article  Google Scholar 

  6. J. Xu, F. Teng, C. Y. Xu, et al., J. Phys. Chem. C 119, 13011 (2015).

    Article  CAS  Google Scholar 

  7. J. W. Kim, D. M. Satoca, and W. Y. Choi, Energy Environ. Sci. 5, 7647 (2012).

    Article  CAS  Google Scholar 

  8. R. Li, Y. F. Jia, N. J. Bu, et al., J. Alloy Compd. 643, 88 (2015).

    Article  CAS  Google Scholar 

  9. H. Eckert, M. Bobeth, S. Teixeira, et al., Chem. Eng. J. 261, 675 (2015).

    Article  Google Scholar 

  10. W. J. Ong, L. L. Tan, S. P. Chai, et al., Nanoscale 6, 1946 (2014).

    Article  CAS  Google Scholar 

  11. C. H. Ma, Y. Li, H. B. Zhang, et al., Chem. Eng. J. 273, 277 (2015).

    Article  CAS  Google Scholar 

  12. L. N. Yin, Y. Li, J. Wang, et al., J. Lumin. 132, 3010 (2012).

    Article  CAS  Google Scholar 

  13. C. X. Lu, Y. Chen, Y. Li, et al., RSC Adv. 5, 54769 (2015).

    Article  CAS  Google Scholar 

  14. Y. Li, S. G. Li, Y. Li, et al., Int. J. Hydrogen Energ. 39, 17608 (2014).

    Article  CAS  Google Scholar 

  15. D. X. Hou, L. Feng, J. B. Zhang, et al., J. Hazard. Mater. 199–200, 301 (2012).

    Article  Google Scholar 

  16. B. J. Fei, W. D. Chen, W. Guo, et al., J. Alloy Compd. 636, 171 (2015).

    Article  CAS  Google Scholar 

  17. W. H. Lee and J. H. Moon, ACS Appl. Mater. Interact. 6, 13968 (2014).

    Article  CAS  Google Scholar 

  18. F. F. Chen, H. B. Wei, Z. Q. Bian, et al., Organometallics 33, 3275 (2014).

    Article  CAS  Google Scholar 

  19. O. Sabrina, R. A. Daniel, D. A. Dickie, et al., Dalton Trans. 43, 8368 (2014).

    Article  Google Scholar 

  20. J. Wang, S. Y. Zhou, J. Wang, et al., Ultrason. Sonochem. 21, 84 (2014).

    Article  Google Scholar 

  21. H. Li, X. J. Shen, Y. D. Liu, et al., J. Alloy Compd. 646, 380 (2015).

    Article  CAS  Google Scholar 

  22. S. Ullah, E. P. F. Neto, A. A. Pasa, et al., Appl. Catal. B: Environ. 179, 333 (2015).

    Article  CAS  Google Scholar 

  23. D. A. Bennett, M. Cargnello, T. R. Gordon, et al., Phys. Chem. Chem. Phys. 17, 17190 (2015).

    Article  CAS  Google Scholar 

  24. W. F. Zhang, X. Lu, Z. Xin, et al., RSC Adv. 5, 55513 (2015).

    Article  CAS  Google Scholar 

  25. X. G. Hou, H. Y. Ma, F. Liu, et al., J. Hazard. Mater. 299, 59 (2015).

    Article  CAS  Google Scholar 

  26. I. Muhammad and H. Klaus, ACS Appl. Mater. Inter. 7, 9088 (2015).

    Article  Google Scholar 

  27. S. Loriano, D. A. Filippo, and N. Francesca, J. Phys. Chem. C 119, 10716 (2015).

    Article  Google Scholar 

  28. W. T. Zhan, H. W. Ni, R. S. Chen, et al., Thin Solid Films 548, 299 (2013).

    Article  CAS  Google Scholar 

  29. M. P. Gonzalez, S. A. Tomas, M. M. Luna, et al., Thin Solid Films 594, 304 (2015).

    Article  Google Scholar 

  30. J. C. Boyer, F. Vetrone, L. A. Cuccia, et al., J. Am. Chem. Soc. 128, 7444 (2006).

    Article  CAS  Google Scholar 

  31. G. J. Feng, S. W. Liu, Z. L. Xiu, et al., J. Phys. Chem. C 112, 13692 (2008).

    Article  CAS  Google Scholar 

  32. S. G. Li, Y. W. Guo, L. Zhang, et al., J. Power Sources 252, 21 (2014).

    Article  CAS  Google Scholar 

  33. L. N. Yin, Y. Li, J. Wang, et al., J. Mol. Catal. A: Chem. 363–364, 265 (2012).

    Article  Google Scholar 

  34. O. B. García, L. A. D. Torres, M. A. M. Nava, et al., J. Electrochem. Soc. 149, 31 (2002).

    Article  Google Scholar 

  35. G. Boulon, Y. Guyot, M. Guzik, et al., J. Phys. Chem. C 118, 15474 (2014).

    Article  CAS  Google Scholar 

  36. R. M. Rodriguez, R. Valiente, S. Polizzi, et al., J. Phys. Chem. C 113, 12195 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Chen, Y., Tang, L. et al. Preparation of Yb, N, and F doped Er3+:Y3Al5O12/TiO2 composite films for visible-light photocatalytic degradation of organic dyes. Russ. J. Phys. Chem. 91, 1345–1357 (2017). https://doi.org/10.1134/S0036024417070093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417070093

Keywords

Navigation