Skip to main content
Log in

Study on the catalytic activity of vanadium doped TiO2: Anatase-to-rutile phase transition

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The catalytic activity of vanadium doped TiO2 in the ethylbenzene oxidative dehydrogenation with CO2 was studied experimentally and theoretically. The experimental results showed that the reduction of ethylbenzene conversion and the styrene selectivity was caused by the transition of anatase to rutile phase. Theoretical results showed that the transition of the anatase to rutile phase was mainly caused by vanadium ions and oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sugino, H. Shimada, T. Turuda, H. Miura, N. Ikenaga, and T. Suzuki, Appl. Catal. A 121, 125 (1995).

    Article  CAS  Google Scholar 

  2. N. Mimura, I. Takahara, M. Saito, T. Hattori, K. Ohkuma, and M. Ando, Catal. Today 45, 61 (1998).

    Article  CAS  Google Scholar 

  3. S. E. Park, J. S. Chang, and J. S. Yoo, in Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century, Ed. by M. M. Maroto- Valer, Y. Soong, and C. Song (Kluwer Academic, Plenum Press, New York, 2001), pp. 359

  4. F. H. Jones, Surf. Sci. Rep. 42, 75 (2001).

    Article  CAS  Google Scholar 

  5. A. Molinari, R. Amadelli, L. Antolini, P. Battioni, and D. Mansuy, J. Mol. Catal. A: Chem. 158, 521 (2000).

    Article  CAS  Google Scholar 

  6. M. Pohl, T. Glogowski, S. Kuhn, C. Hessing, and F. Unterumsberger, Mater. Sci. Eng. A 481–482, 123 (2008).

    Article  Google Scholar 

  7. M. Haruta, B. S. Uphade, S. Tsubota, and A. Miyamoto, Res. Chem. Intermed. 24, 329 (1998).

    Article  CAS  Google Scholar 

  8. K. Takanabe, K Nagaoka, K. Nariai, and K. I. Aika, J. Catal. 230, 75 (2005).

    Article  CAS  Google Scholar 

  9. W. Huang, Z. J. Zuo, P. D. Han, Z. H. Li, and T. D. Zhao, J. Electron. Spectrosc. Relat. Phenom. 173, 88 (2009).

    Article  CAS  Google Scholar 

  10. J. S. Chang, S. E. Park, and M. S. Park, Chem. Lett. 26, 1123 (1997).

    Article  Google Scholar 

  11. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  12. B. Delley, Phys. Rev. B 66, 155125 (2002).

    Article  Google Scholar 

  13. Y. Wang and D. J. Doren, Solid State Commun. 136, 186 (2005).

    Article  CAS  Google Scholar 

  14. R. Janisch and N. A. Spaldin, Phys. Rev. B 73, 035201 (2006).

    Article  Google Scholar 

  15. L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996).

    Article  CAS  Google Scholar 

  16. J. P. Perdew and Y. Wang, Phys. Rev. Lett. 66, 508 (1991).

    Article  CAS  Google Scholar 

  17. L. E. Depero, J. Solid State Chem. 103, 528 (1993).

    Article  CAS  Google Scholar 

  18. L. E. Depero, J. Solid State Chem. 104, 470 (1993).

    Article  CAS  Google Scholar 

  19. L. E. Depero, P. Bonzi, M. Musci, and C. Casale, J. Solid State Chem. 111, 247 (1994).

    Article  CAS  Google Scholar 

  20. C. H. Douglas and J. M. Merilea, J. Am. Ceram. Soc. 77, 1957 (1994).

    Article  Google Scholar 

  21. Z. J. Zuo, W. Huang, P. D. Han, and Z. H. Li, J. Mol. Struct. 757, 118 (2009).

    Article  Google Scholar 

  22. M. Mazaheri, Z. R. Hesabi, and S. K. Sadrnezhaad, Scripta Mater. 59, 139 (2008).

    Article  CAS  Google Scholar 

  23. Z. X. Yang, G. Liu, and R. Q. Wu, Phys. Rev. B 67, 402 (2003).

    Google Scholar 

  24. R. D. Shannon and J. A. Pask, J. Am. Ceram. Soc. 48, 391 (1965).

    Article  CAS  Google Scholar 

  25. K. Koshino, N. L. Peterson, and C. L. Wiley, J. Phys. Chem. Solids 46, 1397 (1985).

    Article  Google Scholar 

  26. J. A. Gamboa and D. M. Pasquevich, J. Am. Ceram. Soc. 75, 2934 (1992).

    Article  CAS  Google Scholar 

  27. M. J. Readey and D. H. Readey, J. Am. Ceram. Soc. 70, C358 (1987).

    Article  CAS  Google Scholar 

  28. R. Asahi, Y. Taga, W. Mannstadt, and A. J. Freeman, Phys. Rev. B 61, 7459 (2000).

    Article  CAS  Google Scholar 

  29. M. Lazzeri, A. Vittadini, and A. Selloni, Phys. Rev. B 63, 5409 (2001).

    Article  Google Scholar 

  30. M. Lazzeri, A. Vittadini, and A. Selloni, Phys. Rev. B 65, 9901(E) (2002).

    Google Scholar 

  31. A. Fahmi, C. Minot, B. Silvi, and M. Causa, Phys. Rev. B 47, 11717 (1993).

    Article  CAS  Google Scholar 

  32. L. Kavan, M. Grätzel, and J. Rathouský, J. Electrochem. Soc. 143, 394 (1996).

    Article  CAS  Google Scholar 

  33. R. W. Godby, M. Schluther, and L. J. Sham, Phys. Rev. B 37, 4170 (1987).

    Article  Google Scholar 

  34. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Bian, H. & Zhang, S. Study on the catalytic activity of vanadium doped TiO2: Anatase-to-rutile phase transition. Russ. J. Phys. Chem. 90, 60–64 (2016). https://doi.org/10.1134/S0036024416010131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416010131

Keywords

Navigation