Skip to main content
Log in

Modifying the catalytic and adsorption properties of metals and oxides

  • Commemorating the Journal’s 85th Anniversary
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of θ ~ 0.1–0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and NiО. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Cо) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. Yagodovskii and S. K. Rei, Russ. J. Phys. Chem. A 56, 1448 (1982).

    Google Scholar 

  2. I. I. Mikhalenko and V. D. Yagodovskii, Russ. J. Phys. Chem. A 76, 516 (2002).

    Google Scholar 

  3. N. D. Lang and W. Kohn, Phys. Rev. B 7, 3571 (1973).

    Article  Google Scholar 

  4. N. I. Lebedev, I. I. Mikhalenko, and V. D. Yagodovskii, Kinet. Catal. 40, 532 (1999).

    CAS  Google Scholar 

  5. C. Mavroyanis, Mol. Phys. 6, 593 (1963).

    Article  Google Scholar 

  6. S. C. Ying, J. R. Smith, and W. Kohn, Phys. Rev. B 11, 1483 (1975).

    Article  CAS  Google Scholar 

  7. R. Aluna, I. I. Mikhalenko, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 72, 716 (1998).

    Google Scholar 

  8. Handbook of Chemistry and Physics, Ed. by Ch. D. Hogman (Chem. Rubber Pub., Ohio, 1955), Vol. 2, p. 234.

  9. V. I. Sarychev, Cand. Sci. (Chem.) Dissertation (People’s Friendship Univ. of Russia, Moscow, 1988).

    Google Scholar 

  10. Z. V. Pskhu, R. Aluna, I. I. Mikhalenko, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 75, 636 (2001).

    Google Scholar 

  11. Z. V. Pskhu, T. V. Yagodovskaya, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 76, 364 (2002).

    Google Scholar 

  12. Z. V. Pskhu, M. A. Ryashentseva, T. V. Yagodovskaya, V. D. Yagodovskii, and O. V. Egorova, Russ. J. Phys. Chem. A 77, 1288 (2003).

    Google Scholar 

  13. V. D. Yagodovskii, N. Yu. Isaeva, A. A. Kondar’, Yu. A. Kudryavtseva, and A. A. Trofimova, Russ. J. Phys. Chem. A 79, 1042 (2005).

    CAS  Google Scholar 

  14. S. K. Rei, Yu. A. Zubarev, V. D. Yagodovskii, and V. V. Artyukhov, Russ. J. Phys. Chem. A 58, 1635 (1984).

    Google Scholar 

  15. V. D. Yagodovskii and S. K. Rei, Russ. J. Phys. Chem. A 60, 1492 (1986).

    Google Scholar 

  16. I. I. Mikhalenko and V. D. Yagodovskii, Russ. J. Phys. Chem. A 79, 1363 (2005).

    CAS  Google Scholar 

  17. J. H. de Boer, J. H. Kasperema, R. H. Vandongen, and J. C. P. Brokhoff, J. Interfase Sci. 38, 97 (1972).

    Article  Google Scholar 

  18. R. A. W. Haul and E. R. Swart, Z. Electrochem. 61 (3), 38 (1957).

    Google Scholar 

  19. N. N. Avgul and A. V. Kiselev, in Chemistry and Physics of Carbon, Ed. by P. I. Walker (Marcel Dekker, New York, 1970), Vol. 6, p. 102.

    Google Scholar 

  20. Z. V. Pskhu and V. D. Yagodovskii, Prot. Met. Phys. Chem. Surf. 47, 291 (2011).

    Article  CAS  Google Scholar 

  21. I. G. Bratchikova, A. I. Pylinina, E. A. Platonov, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 89, 108 (2015).

    Article  CAS  Google Scholar 

  22. E. A. Platonov, A. V. Naumkin, K. I. Maslakov, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 86, 1791 (2012).

    Article  CAS  Google Scholar 

  23. E. A. Platonov, Z. V. Pskhu, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 86, 205 (2012).

    Article  CAS  Google Scholar 

  24. E. A. Platonov, N. N. Lobanov, N. A. Galimova, I. A. Protasova, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 86, 1196 (2012).

    Article  CAS  Google Scholar 

  25. Yu. V. Martynenko, Itogi Nauki Tekh., Fiz. Plazmy, Vzaimod. Plazmy Poverkhn. Tverd. Tel 3, 119 (1962).

    Google Scholar 

  26. T. V. Yagodovskaya and V. V. Lunin, Russ. J. Phys. Chem. A 71, 681 (1997).

    Google Scholar 

  27. E. A. Dadashova, T. V. Yagodovskaya, V. V. Lunin, and V. A. Plakhotnik, Kinet. Katal. 32, 1511 (1991).

    CAS  Google Scholar 

  28. E. A. Dadashova, T. V. Yagodovskaya, L. A. Beilin, et al., Kinet. Katal. 32, 1507 (1991).

    CAS  Google Scholar 

  29. E. A. Dadashova, T. V. Yagodovskaya, E. S. Shpiro, et al., Kinet. Katal. 34, 746 (1993).

    CAS  Google Scholar 

  30. E. A. Dadashova, T. V. Yagodovskaya, L. F. Beilin, et al., Kinet. Katal. 34, 939 (1993).

    CAS  Google Scholar 

  31. A. A. Trofimova, M. A. Ryashentseva, N. Yu. Isaeva, T. V. Yagodovskaya, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 81, 696 (2007).

    Article  CAS  Google Scholar 

  32. C.-J. Lui, K. Yu, Y.-P. Zhang, et al., Appl. Catal. B: Environ. 47, 95 (2004).

    Article  Google Scholar 

  33. H. H. Kim, S. Tsubota, M. Date, et al., Appl. Catal. A: Gen. 329, 93 (2007).

    Article  CAS  Google Scholar 

  34. E. S. Lokteva, A. E. Lazko, E. V. Golubina, V. V. Timofeev, et al., J. Supercrit. Fluids 58, 263 (2011).

    Article  CAS  Google Scholar 

  35. N. A. Galimova, Z. V. Pskhu, A. V. Naumkin, I. O. Volkov, T. V. Yagodovskaya, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 83, 1720 (2009).

    Article  CAS  Google Scholar 

  36. N. A. Galimova, Z. V. Pskhu, A. V. Naumkin, I. O. Volkov, T. V. Yagodovskaya, E. A. Platonov, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 84, 1908 (2010).

    Article  CAS  Google Scholar 

  37. N. A. Galimova, N. N. Lobanov, Z. V. Pskhu, E. A. Platonov, M. S. Tret’yakova, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 84, 338 (2010).

    Article  CAS  Google Scholar 

  38. E. A. Platonov, A. V. Naumkin, I. O. Volkov, N.N. Lobanov, I. A. Protasova, T. V. Yagodovskaya, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 88, 768 (2014).

    Article  CAS  Google Scholar 

  39. M. N. Danilova, A. I. Pylinina, E. A. Platonov, and V. D. Yagodovskii, Zh. Fiz. Khim. 89 (8) (2015, in press).

  40. A. I. Pylinina, I. I. Mikhalenko, T. V. Yagodovskaya, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 84, 2172 (2010).

    Article  CAS  Google Scholar 

  41. A. I. Pylinina, E. I. Povarova, I. I. Mikhalenko, and T. V. Yagodovskaya, Russ. J. Phys. Chem. A 87, 929 (2013).

    Article  CAS  Google Scholar 

  42. M. N. Danilova, E. M. Kasatkin, A. I. Pylinina, et al., Kinet. Katal. 56 (2015, in press).

    Google Scholar 

  43. A. I. Pylinina and I. I. Mikhalenko, Teor. Eksp. Khim. 49, 60 (2013).

    Google Scholar 

  44. N. A. Galimova, Cand. Sci. (Chem.) Dissertation (People’s Friendship Univ. of Russia, Moscow, 2011).

    Google Scholar 

  45. A. A. Gorchakova, I. G. Bratchikova, E. A. Platonov, and V. D. Yagodovskii, Russ. J. Phys. Chem. A 87, 283 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Yagodovskii.

Additional information

Original Russian Text © V.D. Yagodovskii, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 11, pp. 1758–1767.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagodovskii, V.D. Modifying the catalytic and adsorption properties of metals and oxides. Russ. J. Phys. Chem. 89, 2022–2031 (2015). https://doi.org/10.1134/S0036024415110230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415110230

Keywords

Navigation