Skip to main content
Log in

Role of anionic impurities in the formation of the active state of catalysts based on transition metals

  • “Relation between Model and Real Catalysis. Catalysis for Power Engineering,” the 3rd Russian and German Workshop, June 24–27, 2013, Baikal, Russia
  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Experimental data concerning the structure of transition metal-based catalysts are analyzed. Anionic impurities in the oxide precursor markedly modify both its structure and the structure of the catalyst resulting from its reduction. The modifying anionic impurities exert a significant effect on the local environment of the transition metal cations (particularly on that of Jahn-Teller cations) and even on the very possibility of existence of a mixed oxide precursor. In some cases, the changes in the local environment of the cations under the action of modifying ions show themselves as radical changes in the catalyst reduction kinetics. The formation of epitaxial bonding between the particles of the active metal and the surface of the oxide support, as well as the decoration of the particles with an amorphous oxyhydroxide layer, can be favorable for the stabilization of the active metal particles in the reduced state. Presumably, the activation of hydrogen molecules and the substrate being hydrogenated (e.g., CO) occurs on the surface of metal particles completely covered by a thin layer of the amorphous oxyhydroxide. The experimentally observed high activity of these catalysts is unlikely to be solely due to the increase in the specific catalytic activity of the remaining uncovered surface of the metal. It should also be attributed to the high inherent catalytic activity of the metal particles decorated with the oxyhydroxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Litvak, G.S., Minyukova, T.P., Demeshkina, M.P., Plyasova, L.M., and Yurieva, T.M., React. Kinet. Catal. Lett., 1986, vol. 31, no. 2, p. 403.

    Article  CAS  Google Scholar 

  2. Khassin, A.A., Minyukova, T.P., Plyasova, L.M., Filonenko, G.A., and Yurieva, T.M., Advances in Nanoctechnology, vol. 2, Bartul, Z. and Trenor, J., Eds., New York: Nova, 2010, p. 347.

  3. Khassin, A.A., Pelipenko, V.V., Minyukova, T.P., Zaikovskii, V.I., Kochubey, D.I., and Yurieva, T.M., Catal. Today, 2006, vol. 112, nos. 1–4, p. 143.

    Article  CAS  Google Scholar 

  4. Kryukova, G.N., Klenov, D.O., Ivanova, A.S., and Tsybulya, S.V., J. Eur. Ceram. Soc., 2000, vol. 20, p. 1187.

    Article  CAS  Google Scholar 

  5. Reinen, D., Comments Inorg. Chem., 1983, vol. 2, no. 5, p. 227.

    Article  CAS  Google Scholar 

  6. Toporov, N.A., Barzakovskii, V.P., Lapin, V.V., and Kurtseva, N.N., Diagrammy sostoyaniya silikatnykh system: Spravochnik (Phase Diagrams of Silicate Systems: A Hanbook), issue 1, Leningrad: Nauka, 1969, pp. 138, 141.

    Google Scholar 

  7. Ketchik, S.V., Minyukova, T.P., Kuznetsova, L.I., Plyasova, L.M., Yurieva, T.M., and Boreskov, G.K., React. Kinet. Catal. Lett., 1982, vol. 19, p. 345.

    Article  CAS  Google Scholar 

  8. Ketchik, S.V., Plyasova, L.M., Yur’eva, T.M., Kuznetsova, L.I., and Minyukova, T.P., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1984, vol. 15, no. 1, p. 36.

    Google Scholar 

  9. Rebinder, P.A., Kolloidn. Zh., 1958, vol. 20, no. 5, p. 527.

    CAS  Google Scholar 

  10. Khassin, A.A., Kustova, G.N., Jobic, H., Yurieva, T.M., Chesalov, Y.A., Filonenko, G.A., Plyasova, L.M., and Parmon, V.N., Phys. Chem. Chem. Phys., 2009, vol. 11, p. 6090.

    Article  CAS  Google Scholar 

  11. Khasin, A.A., Yur’eva, T.M., Kaichev, V.V., Zaikovskii, V.I., Demeshkina, M.P., Minyukova, T.P., Baronskaya, N.A., Bukhtiyarov, V.I., and Parmon, V.N., Kinet. Catal., 2006, vol. 47, no. 3, p. 412.

    Article  CAS  Google Scholar 

  12. Yurieva, T.M., Plyasova, L.M., Zaikovskii, V.I., Minyukova, T.P., Bliek, A., Heuvel, J.C., Davydova, L.P., Molina, I.Yu., Demeshkina, M.P., Khassin, A.A., and Batyrev, E.D., Phys. Chem. Chem. Phys., 2004, vol. 6, no. 18, p. 4522.

    Article  CAS  Google Scholar 

  13. Khassin, A.A., Ruzankin, S.F., Anufrienko, V.F., Altynnikov, A.A., Larina, T.V., Heuvel, J.C., Yurieva, T.M., and Parmon, V.N., Dokl. Phys. Chem, 2006, vol. 409,part 1, p. 193.

    Article  CAS  Google Scholar 

  14. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25, Berlin: Springer, 1995, p. 37.

    Google Scholar 

  15. Khassin, A.A., Yurieva, T.M., Kaichev, V.V., Bukhtiyarov, V.I., Budneva, A.A., Paukshtis, E.A., and Parmon, V.N., J. Mol. Catal. A: Chem., 2001, vol. 175, nos. 1–2, p. 189.

    Article  CAS  Google Scholar 

  16. Tauster, S.J., Fung, S.C., and Garten, R.L., J. Am. Chem. Soc., 1970, vol. 100, p. 170.

    Article  Google Scholar 

  17. Badyal, J.P.S., in The Chemical Physics of Solid Surfaces, vol. 6, King, D.A. and Woodruff, D.P., Eds., Amsterdam: Elsevier, 1993, p. 311.

  18. Dumesic, J.A., Stevenson, S.A., Chludzinski, J.J., Sherwood, R.D., and Baker, R.T.K., Strong Metal-Support Interactions, Washington, DC: Am. Chem. Soc., 1986, p. 99.

    Book  Google Scholar 

  19. Yurieva, T.M. and Minyukova, T.P., React. Kinet. Catal. Lett., 1985, vol. 29, no. 1, p. 55.

    Article  CAS  Google Scholar 

  20. Minyukova, T.P., Shtertser, N.V., Khassin, A.A., and Yurieva, T.M., Catal. Today, 2012, vol. 193, no. 1, p. 107.

    Article  CAS  Google Scholar 

  21. Minyukova, T.P., Cand. Sci. (Chem.) Dissertation, Novosibirsk: Inst. of Catalysis, 1988.

    Google Scholar 

  22. Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen, F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B.-L., Tovar, M., Fischer, R.W., Nørskov, J.K., and Schlögl, R., Science, 2012, vol. 336, p. 893.

    Article  CAS  Google Scholar 

  23. Grace, F.I. and Inman, M.C., Metallography, 1970, vol. 3, p. 89.

    Article  CAS  Google Scholar 

  24. Fabre, F., Salanon, B., and Lapujoulade, J., Springer Ser. Surf. Sci., 1988, vol. 11, p. 520.

    Article  Google Scholar 

  25. Atkinson, D. and McDaniel, J., Pet. Technol. Q., 2010, vol. 2, p. 95.

    Google Scholar 

  26. Khassin, A.A., Minyukova, T.P., Demeshkina, M.P., Baronskaya, N.A., Plyasova, L.M., Kustova, G.N., Zaikovskii, V.I., and Yurieva, T.M., Kinet. Catal., 2009, vol. 50, no. 6, p. 837.

    Article  CAS  Google Scholar 

  27. Minyukova, T.P., Khassin, A.A., Baronskaya, N.A., Plyasova, L.M., Kriventsov, V.V., Rozhko, E.S., Filonenko, G.A., and Yurieva, T.M., Kinet. Catal., 2012, vol. 53, no. 4, p. 504.

    Article  CAS  Google Scholar 

  28. Khasin, A.A., Yur’eva, T.M., Plyasova, L.M., Kustova, G.N., Jobic, H., Ivanov, A., Chesalov, Yu.A., Zaikovskii, V.I., Khasin, A.V., Davydova, L.P., and Parmon, V.N., Russ. J. Gen. Chem., 2008, vol. 78, no. 11, p. 2203.

    Article  CAS  Google Scholar 

  29. Khassin, A.A., Jobic, H., Filonenko, G.A., Dokuchits, E.V., Khasin, A.V., Minyukova, T.P., Shtertser, N.V., Plyasova, L.M., and Yurieva, T.M., J. Mol. Catal. A: Chem., 2013, vol. 373, p. 151.

    Article  CAS  Google Scholar 

  30. Khassin, A.A., Filonenko, G.A., Minyukova, T.P., Molina, I.Yu., Plyasova, L.M., Larina, T.V., and Anufrienko, V.F., React. Kinet. Mech. Catal., 2010, vol. 101, no. 1, p. 73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khassin.

Additional information

Original Russian Text © A.A. Khassin, T.P. Minyukova, T.M. Yurieva, 2014, published in Kinetika i Kataliz, 2014, Vol. 55, No. 4, pp. 528–534.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khassin, A.A., Minyukova, T.P. & Yurieva, T.M. Role of anionic impurities in the formation of the active state of catalysts based on transition metals. Kinet Catal 55, 502–508 (2014). https://doi.org/10.1134/S0023158414040089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158414040089

Keywords

Navigation